Properties

Label 25383a
Number of curves $1$
Conductor $25383$
CM no
Rank $3$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 25383a1 has rank \(3\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 + T\)
\(8461\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + 2 T + 2 T^{2}\) 1.2.c
\(5\) \( 1 + 3 T + 5 T^{2}\) 1.5.d
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(13\) \( 1 + 6 T + 13 T^{2}\) 1.13.g
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 - 7 T + 29 T^{2}\) 1.29.ah
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 25383a do not have complex multiplication.

Modular form 25383.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{2} - q^{3} + 2 q^{4} - 3 q^{5} + 2 q^{6} - 4 q^{7} + q^{9} + 6 q^{10} - 4 q^{11} - 2 q^{12} - 6 q^{13} + 8 q^{14} + 3 q^{15} - 4 q^{16} - 6 q^{17} - 2 q^{18} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 25383a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
25383.a1 25383a1 \([0, -1, 1, -32, 80]\) \(3738308608/76149\) \(76149\) \([]\) \(7680\) \(-0.27248\) \(\Gamma_0(N)\)-optimal