Show commands: SageMath
                    
            
    Rank
The elliptic curves in class 25350d have rank \(1\).
L-function data
| Bad L-factors: | 
 | ||||||||||||||||||||||||
| Good L-factors: | 
 | ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 25350d do not have complex multiplication.Modular form 25350.2.a.d
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 25350d
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality | 
|---|---|---|---|---|---|---|---|---|
| 25350.s1 | 25350d1 | \([1, 1, 0, -3585000, 2617593750]\) | \(-2365581049/6750\) | \(-14539762812199218750\) | \([]\) | \(943488\) | \(2.5486\) | \(\Gamma_0(N)\)-optimal | 
| 25350.s2 | 25350d2 | \([1, 1, 0, 7125375, 13424362125]\) | \(18573478391/46875000\) | \(-100970575084716796875000\) | \([]\) | \(2830464\) | \(3.0979\) | 
