Learn more

Refine search


Results (31 matches)

  Download displayed columns to          
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images
2535.a1 2535.a \( 3 \cdot 5 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.492375070$ $[0, -1, 1, -32166, 2290862]$ \(y^2+y=x^3-x^2-32166x+2290862\) 390.2.0.?
2535.b1 2535.b \( 3 \cdot 5 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, -56, -1504]$ \(y^2+y=x^3+x^2-56x-1504\) 390.2.0.?
2535.c1 2535.c \( 3 \cdot 5 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.092552971$ $[0, 1, 1, -30, 56]$ \(y^2+y=x^3+x^2-30x+56\) 6.2.0.a.1
2535.d1 2535.d \( 3 \cdot 5 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.112461220$ $[0, 1, 1, -11210, -721444]$ \(y^2+y=x^3+x^2-11210x-721444\) 390.2.0.?
2535.e1 2535.e \( 3 \cdot 5 \cdot 13^{2} \) $1$ $\Z/2\Z$ $0.188699089$ $[1, 0, 0, -1726, 27455]$ \(y^2+xy=x^3-1726x+27455\) 2.3.0.a.1, 12.6.0.f.1, 26.6.0.b.1, 156.12.0.?
2535.e2 2535.e \( 3 \cdot 5 \cdot 13^{2} \) $1$ $\Z/2\Z$ $0.377398178$ $[1, 0, 0, -101, 480]$ \(y^2+xy=x^3-101x+480\) 2.3.0.a.1, 12.6.0.f.1, 52.6.0.c.1, 78.6.0.?, 156.12.0.?
2535.f1 2535.f \( 3 \cdot 5 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, 5859, 228386]$ \(y^2+y=x^3-x^2+5859x+228386\) 3.6.0.b.1, 30.12.0.b.1, 39.12.0.a.1, 390.24.1.?
2535.g1 2535.g \( 3 \cdot 5 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.236654977$ $[0, -1, 1, 35, 93]$ \(y^2+y=x^3-x^2+35x+93\) 3.6.0.b.1, 30.12.0.b.1, 39.12.0.a.1, 390.24.1.?
2535.h1 2535.h \( 3 \cdot 5 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, -543391, -190489685]$ \(y^2+y=x^3+x^2-543391x-190489685\) 3.8.0-3.a.1.1, 6.16.0-6.b.1.1
2535.h2 2535.h \( 3 \cdot 5 \cdot 13^{2} \) $0$ $\Z/3\Z$ $1$ $[0, 1, 1, 49799, 2237746]$ \(y^2+y=x^3+x^2+49799x+2237746\) 3.8.0-3.a.1.2, 6.16.0-6.b.1.2
2535.i1 2535.i \( 3 \cdot 5 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.297404560$ $[0, 1, 1, -3215, -87694]$ \(y^2+y=x^3+x^2-3215x-87694\) 3.4.0.a.1, 6.8.0.b.1, 39.8.0-3.a.1.2, 78.16.0.?
2535.i2 2535.i \( 3 \cdot 5 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.099134853$ $[0, 1, 1, 295, 1109]$ \(y^2+y=x^3+x^2+295x+1109\) 3.4.0.a.1, 6.8.0.b.1, 39.8.0-3.a.1.1, 78.16.0.?
2535.j1 2535.j \( 3 \cdot 5 \cdot 13^{2} \) $1$ $\Z/2\Z$ $16.45312041$ $[1, 1, 0, -365043, -85043772]$ \(y^2+xy=x^3+x^2-365043x-85043772\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.2, 10.6.0.a.1, 16.48.0.x.2, $\ldots$
2535.j2 2535.j \( 3 \cdot 5 \cdot 13^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $8.226560205$ $[1, 1, 0, -22818, -1335537]$ \(y^2+xy=x^3+x^2-22818x-1335537\) 2.6.0.a.1, 4.12.0.b.1, 8.48.0.k.1, 20.24.0.c.1, 40.96.1.cc.2, $\ldots$
2535.j3 2535.j \( 3 \cdot 5 \cdot 13^{2} \) $1$ $\Z/2\Z$ $16.45312041$ $[1, 1, 0, -18593, -1840002]$ \(y^2+xy=x^3+x^2-18593x-1840002\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.ba.2, 16.48.0.u.2, 20.12.0.h.1, $\ldots$
2535.j4 2535.j \( 3 \cdot 5 \cdot 13^{2} \) $1$ $\Z/2\Z$ $4.113280102$ $[1, 1, 0, -13523, 599682]$ \(y^2+xy=x^3+x^2-13523x+599682\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 16.24.0.g.1, 24.24.0.by.2, $\ldots$
2535.j5 2535.j \( 3 \cdot 5 \cdot 13^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $4.113280102$ $[1, 1, 0, -1693, -13112]$ \(y^2+xy=x^3+x^2-1693x-13112\) 2.6.0.a.1, 4.24.0.b.1, 8.48.0.b.2, 24.96.1.n.1, 40.96.1.s.1, $\ldots$
2535.j6 2535.j \( 3 \cdot 5 \cdot 13^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.056640051$ $[1, 1, 0, -848, 9027]$ \(y^2+xy=x^3+x^2-848x+9027\) 2.6.0.a.1, 4.12.0.b.1, 8.24.0.i.1, 16.48.0.d.2, 24.48.0.bb.2, $\ldots$
2535.j7 2535.j \( 3 \cdot 5 \cdot 13^{2} \) $1$ $\Z/2\Z$ $4.113280102$ $[1, 1, 0, -3, 408]$ \(y^2+xy=x^3+x^2-3x+408\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 16.24.0.g.1, 24.24.0.bz.1, $\ldots$
2535.j8 2535.j \( 3 \cdot 5 \cdot 13^{2} \) $1$ $\Z/2\Z$ $2.056640051$ $[1, 1, 0, 5912, -90683]$ \(y^2+xy=x^3+x^2+5912x-90683\) 2.3.0.a.1, 4.12.0.d.1, 8.48.0.n.2, 24.96.1.cv.2, 52.24.0-4.d.1.1, $\ldots$
2535.k1 2535.k \( 3 \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -21970004, -39638148769]$ \(y^2+xy+y=x^3-21970004x-39638148769\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0-8.n.1.7, 12.12.0-4.c.1.2, 16.48.0-16.g.1.9, $\ldots$
2535.k2 2535.k \( 3 \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 1, -1373129, -619428769]$ \(y^2+xy+y=x^3-1373129x-619428769\) 2.6.0.a.1, 4.12.0.b.1, 8.48.0-8.i.1.1, 12.24.0-4.b.1.2, 24.96.0-24.bb.1.13, $\ldots$
2535.k3 2535.k \( 3 \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -1340174, -650564653]$ \(y^2+xy+y=x^3-1340174x-650564653\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0-8.n.1.7, 12.12.0-4.c.1.1, 16.48.0-16.g.1.9, $\ldots$
2535.k4 2535.k \( 3 \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 1, -87884, -9194443]$ \(y^2+xy+y=x^3-87884x-9194443\) 2.6.0.a.1, 4.24.0.b.1, 8.48.0-4.b.1.1, 24.96.0-24.b.1.14, 40.96.0-40.b.2.23, $\ldots$
2535.k5 2535.k \( 3 \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 1, -19439, 880661]$ \(y^2+xy+y=x^3-19439x+880661\) 2.6.0.a.1, 4.12.0.b.1, 8.48.0-8.i.1.3, 20.24.0-4.b.1.2, 40.96.0-40.bc.2.13, $\ldots$
2535.k6 2535.k \( 3 \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -18594, 974287]$ \(y^2+xy+y=x^3-18594x+974287\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0-8.n.1.1, 16.48.0-16.g.1.1, 20.12.0-4.c.1.2, $\ldots$
2535.k7 2535.k \( 3 \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, 35486, 4967081]$ \(y^2+xy+y=x^3+35486x+4967081\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0-8.n.1.1, 16.48.0-16.g.1.1, 20.12.0-4.c.1.1, $\ldots$
2535.k8 2535.k \( 3 \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, 102241, -43492993]$ \(y^2+xy+y=x^3+102241x-43492993\) 2.3.0.a.1, 4.12.0.d.1, 8.24.0.q.1, 16.48.0-8.q.1.1, 24.48.0.be.2, $\ldots$
2535.l1 2535.l \( 3 \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -291698, 60610331]$ \(y^2+xy+y=x^3-291698x+60610331\) 2.3.0.a.1, 12.6.0.f.1, 26.6.0.b.1, 156.12.0.?
2535.l2 2535.l \( 3 \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -17073, 1071631]$ \(y^2+xy+y=x^3-17073x+1071631\) 2.3.0.a.1, 12.6.0.f.1, 52.6.0.c.1, 78.6.0.?, 156.12.0.?
2535.m1 2535.m \( 3 \cdot 5 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, -5126, 144005]$ \(y^2+y=x^3+x^2-5126x+144005\) 6.2.0.a.1
  Download displayed columns to