Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
2535.a1 |
2535b1 |
2535.a |
2535b |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 13^{2} \) |
\( - 3^{7} \cdot 5 \cdot 13^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$390$ |
$2$ |
$0$ |
$0.492375070$ |
$1$ |
|
$4$ |
$14112$ |
$1.475042$ |
$-762549907456/24024195$ |
$[0, -1, 1, -32166, 2290862]$ |
\(y^2+y=x^3-x^2-32166x+2290862\) |
390.2.0.? |
2535.b1 |
2535h1 |
2535.b |
2535h |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 13^{2} \) |
\( - 3 \cdot 5 \cdot 13^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$390$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2016$ |
$0.401890$ |
$-4096/195$ |
$[0, 1, 1, -56, -1504]$ |
\(y^2+y=x^3+x^2-56x-1504\) |
390.2.0.? |
2535.c1 |
2535l1 |
2535.c |
2535l |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 13^{2} \) |
\( - 3^{3} \cdot 5^{2} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$0.092552971$ |
$1$ |
|
$8$ |
$576$ |
$-0.258699$ |
$-18264064/675$ |
$[0, 1, 1, -30, 56]$ |
\(y^2+y=x^3+x^2-30x+56\) |
6.2.0.a.1 |
2535.d1 |
2535k1 |
2535.d |
2535k |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 13^{2} \) |
\( - 3^{3} \cdot 5^{7} \cdot 13^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$390$ |
$2$ |
$0$ |
$0.112461220$ |
$1$ |
|
$10$ |
$14112$ |
$1.407328$ |
$-32278933504/27421875$ |
$[0, 1, 1, -11210, -721444]$ |
\(y^2+y=x^3+x^2-11210x-721444\) |
390.2.0.? |
2535.e1 |
2535i2 |
2535.e |
2535i |
$2$ |
$2$ |
\( 3 \cdot 5 \cdot 13^{2} \) |
\( 3^{6} \cdot 5^{2} \cdot 13^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$156$ |
$12$ |
$0$ |
$0.188699089$ |
$1$ |
|
$10$ |
$1152$ |
$0.511515$ |
$258840217117/18225$ |
$[1, 0, 0, -1726, 27455]$ |
\(y^2+xy=x^3-1726x+27455\) |
2.3.0.a.1, 12.6.0.f.1, 26.6.0.b.1, 156.12.0.? |
2535.e2 |
2535i1 |
2535.e |
2535i |
$2$ |
$2$ |
\( 3 \cdot 5 \cdot 13^{2} \) |
\( - 3^{3} \cdot 5^{4} \cdot 13^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$156$ |
$12$ |
$0$ |
$0.377398178$ |
$1$ |
|
$9$ |
$576$ |
$0.164941$ |
$-51895117/16875$ |
$[1, 0, 0, -101, 480]$ |
\(y^2+xy=x^3-101x+480\) |
2.3.0.a.1, 12.6.0.f.1, 52.6.0.c.1, 78.6.0.?, 156.12.0.? |
2535.f1 |
2535c1 |
2535.f |
2535c |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 13^{2} \) |
\( - 3^{3} \cdot 5^{3} \cdot 13^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.6.0.1 |
3Ns |
$390$ |
$24$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$5616$ |
$1.285877$ |
$2097152/3375$ |
$[0, -1, 1, 5859, 228386]$ |
\(y^2+y=x^3-x^2+5859x+228386\) |
3.6.0.b.1, 30.12.0.b.1, 39.12.0.a.1, 390.24.1.? |
2535.g1 |
2535d1 |
2535.g |
2535d |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 13^{2} \) |
\( - 3^{3} \cdot 5^{3} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.6.0.1 |
3Ns |
$390$ |
$24$ |
$1$ |
$0.236654977$ |
$1$ |
|
$6$ |
$432$ |
$0.003403$ |
$2097152/3375$ |
$[0, -1, 1, 35, 93]$ |
\(y^2+y=x^3-x^2+35x+93\) |
3.6.0.b.1, 30.12.0.b.1, 39.12.0.a.1, 390.24.1.? |
2535.h1 |
2535e2 |
2535.h |
2535e |
$2$ |
$3$ |
\( 3 \cdot 5 \cdot 13^{2} \) |
\( - 3^{3} \cdot 5^{12} \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$6$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$44928$ |
$2.307999$ |
$-21752792449024/6591796875$ |
$[0, 1, 1, -543391, -190489685]$ |
\(y^2+y=x^3+x^2-543391x-190489685\) |
3.8.0-3.a.1.1, 6.16.0-6.b.1.1 |
2535.h2 |
2535e1 |
2535.h |
2535e |
$2$ |
$3$ |
\( 3 \cdot 5 \cdot 13^{2} \) |
\( - 3^{9} \cdot 5^{4} \cdot 13^{8} \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$6$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$14976$ |
$1.758692$ |
$16742875136/12301875$ |
$[0, 1, 1, 49799, 2237746]$ |
\(y^2+y=x^3+x^2+49799x+2237746\) |
3.8.0-3.a.1.2, 6.16.0-6.b.1.2 |
2535.i1 |
2535j2 |
2535.i |
2535j |
$2$ |
$3$ |
\( 3 \cdot 5 \cdot 13^{2} \) |
\( - 3^{3} \cdot 5^{12} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$78$ |
$16$ |
$0$ |
$0.297404560$ |
$1$ |
|
$6$ |
$3456$ |
$1.025522$ |
$-21752792449024/6591796875$ |
$[0, 1, 1, -3215, -87694]$ |
\(y^2+y=x^3+x^2-3215x-87694\) |
3.4.0.a.1, 6.8.0.b.1, 39.8.0-3.a.1.2, 78.16.0.? |
2535.i2 |
2535j1 |
2535.i |
2535j |
$2$ |
$3$ |
\( 3 \cdot 5 \cdot 13^{2} \) |
\( - 3^{9} \cdot 5^{4} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$78$ |
$16$ |
$0$ |
$0.099134853$ |
$1$ |
|
$8$ |
$1152$ |
$0.476216$ |
$16742875136/12301875$ |
$[0, 1, 1, 295, 1109]$ |
\(y^2+y=x^3+x^2+295x+1109\) |
3.4.0.a.1, 6.8.0.b.1, 39.8.0-3.a.1.1, 78.16.0.? |
2535.j1 |
2535a7 |
2535.j |
2535a |
$8$ |
$16$ |
\( 3 \cdot 5 \cdot 13^{2} \) |
\( 3^{4} \cdot 5 \cdot 13^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.121 |
2B |
$6240$ |
$768$ |
$13$ |
$16.45312041$ |
$1$ |
|
$0$ |
$9216$ |
$1.573345$ |
$1114544804970241/405$ |
$[1, 1, 0, -365043, -85043772]$ |
\(y^2+xy=x^3+x^2-365043x-85043772\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.2, 10.6.0.a.1, 16.48.0.x.2, $\ldots$ |
2535.j2 |
2535a5 |
2535.j |
2535a |
$8$ |
$16$ |
\( 3 \cdot 5 \cdot 13^{2} \) |
\( 3^{8} \cdot 5^{2} \cdot 13^{6} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.123 |
2Cs |
$3120$ |
$768$ |
$13$ |
$8.226560205$ |
$1$ |
|
$2$ |
$4608$ |
$1.226770$ |
$272223782641/164025$ |
$[1, 1, 0, -22818, -1335537]$ |
\(y^2+xy=x^3+x^2-22818x-1335537\) |
2.6.0.a.1, 4.12.0.b.1, 8.48.0.k.1, 20.24.0.c.1, 40.96.1.cc.2, $\ldots$ |
2535.j3 |
2535a8 |
2535.j |
2535a |
$8$ |
$16$ |
\( 3 \cdot 5 \cdot 13^{2} \) |
\( - 3^{16} \cdot 5 \cdot 13^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.134 |
2B |
$6240$ |
$768$ |
$13$ |
$16.45312041$ |
$1$ |
|
$0$ |
$9216$ |
$1.573345$ |
$-147281603041/215233605$ |
$[1, 1, 0, -18593, -1840002]$ |
\(y^2+xy=x^3+x^2-18593x-1840002\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0.ba.2, 16.48.0.u.2, 20.12.0.h.1, $\ldots$ |
2535.j4 |
2535a4 |
2535.j |
2535a |
$8$ |
$16$ |
\( 3 \cdot 5 \cdot 13^{2} \) |
\( 3 \cdot 5 \cdot 13^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
32.48.0.1 |
2B |
$6240$ |
$768$ |
$13$ |
$4.113280102$ |
$1$ |
|
$0$ |
$2304$ |
$0.880198$ |
$56667352321/15$ |
$[1, 1, 0, -13523, 599682]$ |
\(y^2+xy=x^3+x^2-13523x+599682\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 16.24.0.g.1, 24.24.0.by.2, $\ldots$ |
2535.j5 |
2535a3 |
2535.j |
2535a |
$8$ |
$16$ |
\( 3 \cdot 5 \cdot 13^{2} \) |
\( 3^{4} \cdot 5^{4} \cdot 13^{6} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.44 |
2Cs |
$3120$ |
$768$ |
$13$ |
$4.113280102$ |
$1$ |
|
$2$ |
$2304$ |
$0.880198$ |
$111284641/50625$ |
$[1, 1, 0, -1693, -13112]$ |
\(y^2+xy=x^3+x^2-1693x-13112\) |
2.6.0.a.1, 4.24.0.b.1, 8.48.0.b.2, 24.96.1.n.1, 40.96.1.s.1, $\ldots$ |
2535.j6 |
2535a2 |
2535.j |
2535a |
$8$ |
$16$ |
\( 3 \cdot 5 \cdot 13^{2} \) |
\( 3^{2} \cdot 5^{2} \cdot 13^{6} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.3 |
2Cs |
$3120$ |
$768$ |
$13$ |
$2.056640051$ |
$1$ |
|
$6$ |
$1152$ |
$0.533624$ |
$13997521/225$ |
$[1, 1, 0, -848, 9027]$ |
\(y^2+xy=x^3+x^2-848x+9027\) |
2.6.0.a.1, 4.12.0.b.1, 8.24.0.i.1, 16.48.0.d.2, 24.48.0.bb.2, $\ldots$ |
2535.j7 |
2535a1 |
2535.j |
2535a |
$8$ |
$16$ |
\( 3 \cdot 5 \cdot 13^{2} \) |
\( - 3 \cdot 5 \cdot 13^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
32.48.0.1 |
2B |
$6240$ |
$768$ |
$13$ |
$4.113280102$ |
$1$ |
|
$3$ |
$576$ |
$0.187050$ |
$-1/15$ |
$[1, 1, 0, -3, 408]$ |
\(y^2+xy=x^3+x^2-3x+408\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 16.24.0.g.1, 24.24.0.bz.1, $\ldots$ |
2535.j8 |
2535a6 |
2535.j |
2535a |
$8$ |
$16$ |
\( 3 \cdot 5 \cdot 13^{2} \) |
\( - 3^{2} \cdot 5^{8} \cdot 13^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.197 |
2B |
$6240$ |
$768$ |
$13$ |
$2.056640051$ |
$1$ |
|
$2$ |
$4608$ |
$1.226770$ |
$4733169839/3515625$ |
$[1, 1, 0, 5912, -90683]$ |
\(y^2+xy=x^3+x^2+5912x-90683\) |
2.3.0.a.1, 4.12.0.d.1, 8.48.0.n.2, 24.96.1.cv.2, 52.24.0-4.d.1.1, $\ldots$ |
2535.k1 |
2535f7 |
2535.k |
2535f |
$8$ |
$16$ |
\( 3 \cdot 5 \cdot 13^{2} \) |
\( 3 \cdot 5^{4} \cdot 13^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.111 |
2B |
$6240$ |
$768$ |
$13$ |
$1$ |
$16$ |
$2$ |
$0$ |
$64512$ |
$2.471893$ |
$242970740812818720001/24375$ |
$[1, 0, 1, -21970004, -39638148769]$ |
\(y^2+xy+y=x^3-21970004x-39638148769\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0-8.n.1.7, 12.12.0-4.c.1.2, 16.48.0-16.g.1.9, $\ldots$ |
2535.k2 |
2535f5 |
2535.k |
2535f |
$8$ |
$16$ |
\( 3 \cdot 5 \cdot 13^{2} \) |
\( 3^{2} \cdot 5^{8} \cdot 13^{8} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.143 |
2Cs |
$3120$ |
$768$ |
$13$ |
$1$ |
$16$ |
$2$ |
$2$ |
$32256$ |
$2.125317$ |
$59319456301170001/594140625$ |
$[1, 0, 1, -1373129, -619428769]$ |
\(y^2+xy+y=x^3-1373129x-619428769\) |
2.6.0.a.1, 4.12.0.b.1, 8.48.0-8.i.1.1, 12.24.0-4.b.1.2, 24.96.0-24.bb.1.13, $\ldots$ |
2535.k3 |
2535f8 |
2535.k |
2535f |
$8$ |
$16$ |
\( 3 \cdot 5 \cdot 13^{2} \) |
\( - 3 \cdot 5^{16} \cdot 13^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.111 |
2B |
$6240$ |
$768$ |
$13$ |
$1$ |
$16$ |
$2$ |
$0$ |
$64512$ |
$2.471893$ |
$-55150149867714721/5950927734375$ |
$[1, 0, 1, -1340174, -650564653]$ |
\(y^2+xy+y=x^3-1340174x-650564653\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0-8.n.1.7, 12.12.0-4.c.1.1, 16.48.0-16.g.1.9, $\ldots$ |
2535.k4 |
2535f3 |
2535.k |
2535f |
$8$ |
$16$ |
\( 3 \cdot 5 \cdot 13^{2} \) |
\( 3^{4} \cdot 5^{4} \cdot 13^{10} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.43 |
2Cs |
$3120$ |
$768$ |
$13$ |
$1$ |
$4$ |
$2$ |
$2$ |
$16128$ |
$1.778744$ |
$15551989015681/1445900625$ |
$[1, 0, 1, -87884, -9194443]$ |
\(y^2+xy+y=x^3-87884x-9194443\) |
2.6.0.a.1, 4.24.0.b.1, 8.48.0-4.b.1.1, 24.96.0-24.b.1.14, 40.96.0-40.b.2.23, $\ldots$ |
2535.k5 |
2535f2 |
2535.k |
2535f |
$8$ |
$16$ |
\( 3 \cdot 5 \cdot 13^{2} \) |
\( 3^{8} \cdot 5^{2} \cdot 13^{8} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.82 |
2Cs |
$3120$ |
$768$ |
$13$ |
$1$ |
$1$ |
|
$2$ |
$8064$ |
$1.432171$ |
$168288035761/27720225$ |
$[1, 0, 1, -19439, 880661]$ |
\(y^2+xy+y=x^3-19439x+880661\) |
2.6.0.a.1, 4.12.0.b.1, 8.48.0-8.i.1.3, 20.24.0-4.b.1.2, 40.96.0-40.bc.2.13, $\ldots$ |
2535.k6 |
2535f1 |
2535.k |
2535f |
$8$ |
$16$ |
\( 3 \cdot 5 \cdot 13^{2} \) |
\( 3^{4} \cdot 5 \cdot 13^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.86 |
2B |
$6240$ |
$768$ |
$13$ |
$1$ |
$1$ |
|
$1$ |
$4032$ |
$1.085598$ |
$147281603041/5265$ |
$[1, 0, 1, -18594, 974287]$ |
\(y^2+xy+y=x^3-18594x+974287\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0-8.n.1.1, 16.48.0-16.g.1.1, 20.12.0-4.c.1.2, $\ldots$ |
2535.k7 |
2535f4 |
2535.k |
2535f |
$8$ |
$16$ |
\( 3 \cdot 5 \cdot 13^{2} \) |
\( - 3^{16} \cdot 5 \cdot 13^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.86 |
2B |
$6240$ |
$768$ |
$13$ |
$1$ |
$1$ |
|
$0$ |
$16128$ |
$1.778744$ |
$1023887723039/2798036865$ |
$[1, 0, 1, 35486, 4967081]$ |
\(y^2+xy+y=x^3+35486x+4967081\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0-8.n.1.1, 16.48.0-16.g.1.1, 20.12.0-4.c.1.1, $\ldots$ |
2535.k8 |
2535f6 |
2535.k |
2535f |
$8$ |
$16$ |
\( 3 \cdot 5 \cdot 13^{2} \) |
\( - 3^{2} \cdot 5^{2} \cdot 13^{14} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.61 |
2B |
$6240$ |
$768$ |
$13$ |
$1$ |
$4$ |
$2$ |
$0$ |
$32256$ |
$2.125317$ |
$24487529386319/183539412225$ |
$[1, 0, 1, 102241, -43492993]$ |
\(y^2+xy+y=x^3+102241x-43492993\) |
2.3.0.a.1, 4.12.0.d.1, 8.24.0.q.1, 16.48.0-8.q.1.1, 24.48.0.be.2, $\ldots$ |
2535.l1 |
2535m2 |
2535.l |
2535m |
$2$ |
$2$ |
\( 3 \cdot 5 \cdot 13^{2} \) |
\( 3^{6} \cdot 5^{2} \cdot 13^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$156$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$14976$ |
$1.793989$ |
$258840217117/18225$ |
$[1, 0, 1, -291698, 60610331]$ |
\(y^2+xy+y=x^3-291698x+60610331\) |
2.3.0.a.1, 12.6.0.f.1, 26.6.0.b.1, 156.12.0.? |
2535.l2 |
2535m1 |
2535.l |
2535m |
$2$ |
$2$ |
\( 3 \cdot 5 \cdot 13^{2} \) |
\( - 3^{3} \cdot 5^{4} \cdot 13^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$156$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$7488$ |
$1.447416$ |
$-51895117/16875$ |
$[1, 0, 1, -17073, 1071631]$ |
\(y^2+xy+y=x^3-17073x+1071631\) |
2.3.0.a.1, 12.6.0.f.1, 52.6.0.c.1, 78.6.0.?, 156.12.0.? |
2535.m1 |
2535g1 |
2535.m |
2535g |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 13^{2} \) |
\( - 3^{3} \cdot 5^{2} \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$7488$ |
$1.023775$ |
$-18264064/675$ |
$[0, 1, 1, -5126, 144005]$ |
\(y^2+y=x^3+x^2-5126x+144005\) |
6.2.0.a.1 |