Properties

Label 25200fh
Number of curves $2$
Conductor $25200$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands for: SageMath
sage: E = EllipticCurve("fh1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 25200fh

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
25200.da2 25200fh1 \([0, 0, 0, 3525, -6550]\) \(2595575/1512\) \(-2821754880000\) \([]\) \(41472\) \(1.0785\) \(\Gamma_0(N)\)-optimal
25200.da1 25200fh2 \([0, 0, 0, -50475, -4618150]\) \(-7620530425/526848\) \(-983224811520000\) \([]\) \(124416\) \(1.6278\)  

Rank

sage: E.rank()
 

The elliptic curves in class 25200fh have rank \(0\).

Complex multiplication

The elliptic curves in class 25200fh do not have complex multiplication.

Modular form 25200.2.a.fh

sage: E.q_eigenform(10)
 
\(q - q^{7} + 6q^{11} - q^{13} - 3q^{17} + 4q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.