Properties

Label 25200eq3
Conductor $25200$
Discriminant $-6.379\times 10^{17}$
j-invariant \( -\frac{250523582464}{13671875} \)
CM no
Rank $0$
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands for: Magma / Pari/GP / SageMath

Minimal Weierstrass equation

sage: E = EllipticCurve([0, 0, 0, -472800, -130898000])
 
gp: E = ellinit([0, 0, 0, -472800, -130898000])
 
magma: E := EllipticCurve([0, 0, 0, -472800, -130898000]);
 

\(y^2=x^3-472800x-130898000\)  Toggle raw display

Mordell-Weil group structure

trivial

Integral points

sage: E.integral_points()
 
magma: IntegralPoints(E);
 

\(\)  Toggle raw display

Invariants

sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor: \( 25200 \)  =  \(2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7\)
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant: \(-637875000000000000 \)  =  \(-1 \cdot 2^{12} \cdot 3^{6} \cdot 5^{15} \cdot 7 \)
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
j-invariant: \( -\frac{250523582464}{13671875} \)  =  \(-1 \cdot 2^{15} \cdot 5^{-9} \cdot 7^{-1} \cdot 197^{3}\)
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
Sato-Tate group: $\mathrm{SU}(2)$
Faltings height: \(2.1746344047420550767229023082\dots\)
Stable Faltings height: \(0.12746212363100473430766790167\dots\)

BSD invariants

sage: E.rank()
 
magma: Rank(E);
 
Analytic rank: \(0\)
sage: E.regulator()
 
magma: Regulator(E);
 
Regulator: \(1\)
sage: E.period_lattice().omega()
 
gp: E.omega[1]
 
magma: RealPeriod(E);
 
Real period: \(0.090745450767716938908977616270\dots\)
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
Tamagawa product: \( 2 \)  = \( 1\cdot1\cdot2\cdot1 \)
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
Torsion order: \(1\)
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 
Analytic order of Ш: \(9\) = $3^2$ (exact)

Modular invariants

Modular form 25200.2.a.dn

sage: E.q_eigenform(20)
 
gp: xy = elltaniyama(E);
 
gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)
 
magma: ModularForm(E);
 

\( q + q^{7} - 3q^{11} - 5q^{13} + 3q^{17} - 2q^{19} + O(q^{20}) \)  Toggle raw display

For more coefficients, see the Downloads section to the right.

sage: E.modular_degree()
 
magma: ModularDegree(E);
 
Modular degree: 311040
\( \Gamma_0(N) \)-optimal: no
Manin constant: 1

Special L-value

sage: r = E.rank();
 
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: ar = ellanalyticrank(E);
 
gp: ar[2]/factorial(ar[1])
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 

\( L(E,1) \) ≈ \( 1.6334181138189049003615970928710312568 \)

Local data

This elliptic curve is not semistable. There are 4 primes of bad reduction:

sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
prime Tamagawa number Kodaira symbol Reduction type Root number ord(\(N\)) ord(\(\Delta\)) ord\((j)_{-}\)
\(2\) \(1\) \(II^{*}\) Additive -1 4 12 0
\(3\) \(1\) \(I_0^{*}\) Additive -1 2 6 0
\(5\) \(2\) \(I_9^{*}\) Additive 1 2 15 9
\(7\) \(1\) \(I_{1}\) Split multiplicative -1 1 1 1

Galois representations

The 2-adic representation attached to this elliptic curve is surjective.

sage: rho = E.galois_representation();
 
sage: [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.

prime Image of Galois representation
\(3\) B

$p$-adic data

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]
 

All \(p\)-adic regulators are identically \(1\) since the rank is \(0\).

Iwasawa invariants

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type add add add split ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary
$\lambda$-invariant(s) - - - 1 0 0 0 0 0 0 0 0 0 0 0
$\mu$-invariant(s) - - - 0 0 0 0 0 0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

Isogenies

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3 and 9.
Its isogeny class 25200eq consists of 3 curves linked by isogenies of degrees dividing 9.

Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base change curve
$2$ \(\Q(\sqrt{-5}) \) \(\Z/3\Z\) Not in database
$3$ 3.1.140.1 \(\Z/2\Z\) Not in database
$6$ 6.0.686000.1 \(\Z/2\Z \times \Z/2\Z\) Not in database
$6$ 6.2.42007896000.1 \(\Z/3\Z\) Not in database
$6$ 6.0.126023688000.1 \(\Z/9\Z\) Not in database
$6$ 6.0.1568000.1 \(\Z/6\Z\) Not in database
$12$ Deg 12 \(\Z/4\Z\) Not in database
$12$ Deg 12 \(\Z/3\Z \times \Z/3\Z\) Not in database
$12$ Deg 12 \(\Z/9\Z\) Not in database
$12$ 12.0.120472576000000.1 \(\Z/2\Z \times \Z/6\Z\) Not in database
$18$ 18.2.232471032378967309855850496000000000.1 \(\Z/6\Z\) Not in database
$18$ 18.0.6276717874232117366107963392000000000.2 \(\Z/18\Z\) Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.