Properties

 Label 25200.p Number of curves $8$ Conductor $25200$ CM no Rank $1$ Graph

Related objects

Show commands for: SageMath
sage: E = EllipticCurve("25200.p1")

sage: E.isogeny_class()

Elliptic curves in class 25200.p

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
25200.p1 25200dz8 [0, 0, 0, -6914880075, -221322257999750] [2] 9437184
25200.p2 25200dz6 [0, 0, 0, -432180075, -3458159099750] [2, 2] 4718592
25200.p3 25200dz7 [0, 0, 0, -429480075, -3503500199750] [2] 9437184
25200.p4 25200dz4 [0, 0, 0, -54252075, 153763452250] [2] 2359296
25200.p5 25200dz3 [0, 0, 0, -27180075, -53324099750] [2, 2] 2359296
25200.p6 25200dz2 [0, 0, 0, -3852075, 1706652250] [2, 2] 1179648
25200.p7 25200dz1 [0, 0, 0, 755925, 190620250] [2] 589824 $$\Gamma_0(N)$$-optimal
25200.p8 25200dz5 [0, 0, 0, 4571925, -170457227750] [2] 4718592

Rank

sage: E.rank()

The elliptic curves in class 25200.p have rank $$1$$.

Modular form 25200.2.a.p

sage: E.q_eigenform(10)

$$q - q^{7} - 4q^{11} + 2q^{13} + 2q^{17} - 4q^{19} + O(q^{20})$$

Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rrrrrrrr} 1 & 2 & 4 & 16 & 4 & 8 & 16 & 8 \\ 2 & 1 & 2 & 8 & 2 & 4 & 8 & 4 \\ 4 & 2 & 1 & 16 & 4 & 8 & 16 & 8 \\ 16 & 8 & 16 & 1 & 4 & 2 & 4 & 8 \\ 4 & 2 & 4 & 4 & 1 & 2 & 4 & 2 \\ 8 & 4 & 8 & 2 & 2 & 1 & 2 & 4 \\ 16 & 8 & 16 & 4 & 4 & 2 & 1 & 8 \\ 8 & 4 & 8 & 8 & 2 & 4 & 8 & 1 \end{array}\right)$$

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels.