Properties

Label 25200.cr
Number of curves 6
Conductor 25200
CM no
Rank 1
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath

sage: E = EllipticCurve("25200.cr1")
sage: E.isogeny_class()

Elliptic curves in class 25200.cr

sage: E.isogeny_class().curves
LMFDB label Cremona label Weierstrass coefficients Torsion order Modular degree Optimality
25200.cr1 25200dx6 [0, 0, 0, -2822475, -1825127750] 2 262144  
25200.cr2 25200dx4 [0, 0, 0, -176475, -28493750] 4 131072  
25200.cr3 25200dx3 [0, 0, 0, -140475, 20142250] 2 131072  
25200.cr4 25200dx5 [0, 0, 0, -122475, -46259750] 2 262144  
25200.cr5 25200dx2 [0, 0, 0, -14475, -143750] 4 65536  
25200.cr6 25200dx1 [0, 0, 0, 3525, -17750] 2 32768 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()

The elliptic curves in class 25200.cr have rank \(1\).

Modular form 25200.2.a.cr

sage: E.q_eigenform(10)
\( q - q^{7} + 4q^{11} + 2q^{13} - 6q^{17} - 4q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrrrr} 1 & 2 & 8 & 4 & 4 & 8 \\ 2 & 1 & 4 & 2 & 2 & 4 \\ 8 & 4 & 1 & 8 & 2 & 4 \\ 4 & 2 & 8 & 1 & 4 & 8 \\ 4 & 2 & 2 & 4 & 1 & 2 \\ 8 & 4 & 4 & 8 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels.