Properties

Label 25200.a
Number of curves $2$
Conductor $25200$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("25200.a1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 25200.a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
25200.a1 25200dh2 [0, 0, 0, -23355, -1372950] [2] 55296  
25200.a2 25200dh1 [0, 0, 0, -1755, -12150] [2] 27648 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 25200.a have rank \(1\).

Modular form 25200.2.a.a

sage: E.q_eigenform(10)
 
\( q - q^{7} - 6q^{11} - 2q^{13} - 2q^{17} - 4q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.