# Properties

 Label 250173be Number of curves 2 Conductor 250173 CM no Rank 0 Graph # Related objects

Show commands for: SageMath
sage: E = EllipticCurve("250173.be1")

sage: E.isogeny_class()

## Elliptic curves in class 250173be

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
250173.be2 250173be1 [0, 0, 1, -110466, 3434644] [] 1866240 $$\Gamma_0(N)$$-optimal
250173.be1 250173be2 [0, 0, 1, -6900876, 6977562959] [] 5598720

## Rank

sage: E.rank()

The elliptic curves in class 250173be have rank $$0$$.

## Modular form 250173.2.a.be

sage: E.q_eigenform(10)

$$q - 2q^{4} + 3q^{5} + q^{7} + q^{11} + 4q^{13} + 4q^{16} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the Cremona numbering.

$$\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with Cremona labels. 