Properties

Label 250173.be
Number of curves 2
Conductor 250173
CM no
Rank 0
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("250173.be1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 250173.be

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
250173.be1 250173be2 [0, 0, 1, -6900876, 6977562959] [] 5598720  
250173.be2 250173be1 [0, 0, 1, -110466, 3434644] [] 1866240 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 250173.be have rank \(0\).

Modular form 250173.2.a.be

sage: E.q_eigenform(10)
 
\( q - 2q^{4} + 3q^{5} + q^{7} + q^{11} + 4q^{13} + 4q^{16} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.