Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3-173039570x+782524080900\) | (homogenize, simplify) |
\(y^2z+xyz=x^3-173039570xz^2+782524080900z^3\) | (dehomogenize, simplify) |
\(y^2=x^3-224259282747x+36510116296318614\) | (homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{8}\Z\)
Infinite order Mordell-Weil generator and height
$P$ | = | \(\left(4420, 320350\right)\) |
$\hat{h}(P)$ | ≈ | $2.3728073091509491395201279319$ |
Torsion generators
\( \left(11140, 481630\right) \)
Integral points
\( \left(-14960, 159730\right) \), \( \left(-14960, -144770\right) \), \( \left(-8460, 1285230\right) \), \( \left(-8460, -1276770\right) \), \( \left(-1040, 981010\right) \), \( \left(-1040, -979970\right) \), \( \left(4420, 320350\right) \), \( \left(4420, -324770\right) \), \( \left(9540, -4770\right) \), \( \left(11140, 481630\right) \), \( \left(11140, -492770\right) \), \( \left(19540, 2195230\right) \), \( \left(19540, -2214770\right) \), \( \left(72040, 18995230\right) \), \( \left(72040, -19067270\right) \)
Invariants
Conductor: | \( 249690 \) | = | $2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41$ | comment: Conductor
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
|
Discriminant: | $67058993610000000000000000 $ | = | $2^{16} \cdot 3^{4} \cdot 5^{16} \cdot 7^{4} \cdot 29^{2} \cdot 41 $ | comment: Discriminant
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
|
j-invariant: | \( \frac{573007087724441463649920782881}{67058993610000000000000000} \) | = | $2^{-16} \cdot 3^{-4} \cdot 5^{-16} \cdot 7^{-4} \cdot 29^{-2} \cdot 41^{-1} \cdot 47^{3} \cdot 176721263^{3}$ | comment: j-invariant
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
|
Endomorphism ring: | $\Z$ | |||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | sage: E.has_cm()
magma: HasComplexMultiplication(E);
| |
Sato-Tate group: | $\mathrm{SU}(2)$ | |||
Faltings height: | $3.6871987362008976257777804999\dots$ | gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
|
||
Stable Faltings height: | $3.6871987362008976257777804999\dots$ | magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
|
||
$abc$ quality: | $0.9871081778887347\dots$ | |||
Szpiro ratio: | $5.513423807216887\dots$ |
BSD invariants
Analytic rank: | $1$ | sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
|
Regulator: | $2.3728073091509491395201279319\dots$ | comment: Regulator
sage: E.regulator()
G = E.gen \\ if available
magma: Regulator(E);
|
Real period: | $0.059804267584190845356381608967\dots$ | comment: Real Period
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
Tamagawa product: | $ 8192 $ = $ 2^{4}\cdot2^{2}\cdot2^{4}\cdot2^{2}\cdot2\cdot1 $ | comment: Tamagawa numbers
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
|
Torsion order: | $8$ | comment: Torsion order
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
|
Analytic order of Ш: | $1$ ( rounded) | comment: Order of Sha
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
Special value: | $ L'(E,1) $ ≈ $ 18.163712414999963320828938200 $ | comment: Special L-value
r = E.rank();
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
BSD formula
$\displaystyle 18.163712415 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.059804 \cdot 2.372807 \cdot 8192}{8^2} \approx 18.163712415$
Modular invariants
Modular form 249690.2.a.cj
For more coefficients, see the Downloads section to the right.
Modular degree: | 95420416 | comment: Modular degree
sage: E.modular_degree()
gp: ellmoddegree(E)
magma: ModularDegree(E);
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 | comment: Manin constant
magma: ManinConstant(E);
|
Local data
This elliptic curve is semistable. There are 6 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $v_p(N)$ | $v_p(\Delta)$ | $v_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $16$ | $I_{16}$ | split multiplicative | -1 | 1 | 16 | 16 |
$3$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
$5$ | $16$ | $I_{16}$ | split multiplicative | -1 | 1 | 16 | 16 |
$7$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
$29$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
$41$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 16.96.0.95 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 3995040 = 2^{5} \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 \), index $768$, genus $13$, and generators
$\left(\begin{array}{rr} 2663383 & 26 \\ 3992502 & 3992171 \end{array}\right),\left(\begin{array}{rr} 1248481 & 32 \\ 250650 & 991 \end{array}\right),\left(\begin{array}{rr} 3312992 & 29 \\ 295147 & 2562 \end{array}\right),\left(\begin{array}{rr} 1 & 32 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3995009 & 32 \\ 3995008 & 33 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 32 & 1 \end{array}\right),\left(\begin{array}{rr} 3424343 & 26 \\ 1138902 & 3992171 \end{array}\right),\left(\begin{array}{rr} 1515383 & 26 \\ 276294 & 875 \end{array}\right),\left(\begin{array}{rr} 23 & 18 \\ 3992478 & 3993035 \end{array}\right),\left(\begin{array}{rr} 1598017 & 32 \\ 1598032 & 513 \end{array}\right),\left(\begin{array}{rr} 5 & 28 \\ 68 & 381 \end{array}\right),\left(\begin{array}{rr} 499383 & 2 \\ 499402 & 15 \end{array}\right)$.
The torsion field $K:=\Q(E[3995040])$ is a degree-$44692166553769082880000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/3995040\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 41 \) |
$3$ | split multiplicative | $4$ | \( 83230 = 2 \cdot 5 \cdot 7 \cdot 29 \cdot 41 \) |
$5$ | split multiplicative | $6$ | \( 49938 = 2 \cdot 3 \cdot 7 \cdot 29 \cdot 41 \) |
$7$ | split multiplicative | $8$ | \( 35670 = 2 \cdot 3 \cdot 5 \cdot 29 \cdot 41 \) |
$29$ | split multiplicative | $30$ | \( 8610 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 41 \) |
$41$ | split multiplicative | $42$ | \( 6090 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 4, 8 and 16.
Its isogeny class 249690cj
consists of 8 curves linked by isogenies of
degrees dividing 16.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{8}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{41}) \) | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$2$ | \(\Q(\sqrt{24969}) \) | \(\Z/16\Z\) | not in database |
$2$ | \(\Q(\sqrt{609}) \) | \(\Z/16\Z\) | not in database |
$4$ | \(\Q(\sqrt{41}, \sqrt{609})\) | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
$8$ | deg 8 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
$8$ | deg 8 | \(\Z/32\Z\) | not in database |
$8$ | deg 8 | \(\Z/32\Z\) | not in database |
$8$ | deg 8 | \(\Z/24\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/16\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/32\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/32\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/24\Z\) | not in database |
$16$ | deg 16 | \(\Z/48\Z\) | not in database |
$16$ | deg 16 | \(\Z/48\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.