Properties

Label 249690.cj
Number of curves $8$
Conductor $249690$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("cj1")
 
E.isogeny_class()
 

Elliptic curves in class 249690.cj

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
249690.cj1 249690cj8 \([1, 0, 0, -2661640801120, -1671368986468560610]\) \(2085316829313324338342454357175715767150081/499057650210\) \(499057650210\) \([2]\) \(1526726656\) \(5.0735\)  
249690.cj2 249690cj6 \([1, 0, 0, -166352550070, -26115150810599200]\) \(509110554031752646938166145889438134881/249058538233126713044100\) \(249058538233126713044100\) \([2, 2]\) \(763363328\) \(4.7269\)  
249690.cj3 249690cj7 \([1, 0, 0, -166351667020, -26115441927282190]\) \(-509102446533164296117678747246704511681/11260482449836875928123468727010\) \(-11260482449836875928123468727010\) \([2]\) \(1526726656\) \(5.0735\)  
249690.cj4 249690cj4 \([1, 0, 0, -10397089570, -408045332529100]\) \(124296548246895698958145872007982881/2749138304449961117564010000\) \(2749138304449961117564010000\) \([2, 4]\) \(381681664\) \(4.3803\)  
249690.cj5 249690cj5 \([1, 0, 0, -10026429070, -438485381299000]\) \(-111471172596350616707438857829030881/18551296611518877695051385524100\) \(-18551296611518877695051385524100\) \([4]\) \(763363328\) \(4.7269\)  
249690.cj6 249690cj2 \([1, 0, 0, -673039570, -5895575919100]\) \(33716734605576776462761920782881/4496908623986020832100000000\) \(4496908623986020832100000000\) \([2, 8]\) \(190840832\) \(4.0338\)  
249690.cj7 249690cj1 \([1, 0, 0, -173039570, 782524080900]\) \(573007087724441463649920782881/67058993610000000000000000\) \(67058993610000000000000000\) \([8]\) \(95420416\) \(3.6872\) \(\Gamma_0(N)\)-optimal
249690.cj8 249690cj3 \([1, 0, 0, 1051010430, -31142219309100]\) \(128394017933147245660796166417119/493274390082338961058364010000\) \(-493274390082338961058364010000\) \([8]\) \(381681664\) \(4.3803\)  

Rank

sage: E.rank()
 

The elliptic curves in class 249690.cj have rank \(1\).

Complex multiplication

The elliptic curves in class 249690.cj do not have complex multiplication.

Modular form 249690.2.a.cj

sage: E.q_eigenform(10)
 
\(q + q^{2} + q^{3} + q^{4} + q^{5} + q^{6} + q^{7} + q^{8} + q^{9} + q^{10} - 4 q^{11} + q^{12} - 2 q^{13} + q^{14} + q^{15} + q^{16} + 2 q^{17} + q^{18} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrrrrrr} 1 & 2 & 4 & 4 & 8 & 8 & 16 & 16 \\ 2 & 1 & 2 & 2 & 4 & 4 & 8 & 8 \\ 4 & 2 & 1 & 4 & 8 & 8 & 16 & 16 \\ 4 & 2 & 4 & 1 & 2 & 2 & 4 & 4 \\ 8 & 4 & 8 & 2 & 1 & 4 & 8 & 8 \\ 8 & 4 & 8 & 2 & 4 & 1 & 2 & 2 \\ 16 & 8 & 16 & 4 & 8 & 2 & 1 & 4 \\ 16 & 8 & 16 & 4 & 8 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.