Properties

Label 2496.s
Number of curves $4$
Conductor $2496$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("s1")
 
E.isogeny_class()
 

Elliptic curves in class 2496.s

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2496.s1 2496bb3 \([0, 1, 0, -3329, 72831]\) \(62275269892/39\) \(2555904\) \([2]\) \(1024\) \(0.54970\)  
2496.s2 2496bb2 \([0, 1, 0, -209, 1071]\) \(61918288/1521\) \(24920064\) \([2, 2]\) \(512\) \(0.20313\)  
2496.s3 2496bb1 \([0, 1, 0, -29, -45]\) \(2725888/1053\) \(1078272\) \([2]\) \(256\) \(-0.14345\) \(\Gamma_0(N)\)-optimal
2496.s4 2496bb4 \([0, 1, 0, 31, 3615]\) \(48668/85683\) \(-5615321088\) \([2]\) \(1024\) \(0.54970\)  

Rank

sage: E.rank()
 

The elliptic curves in class 2496.s have rank \(1\).

Complex multiplication

The elliptic curves in class 2496.s do not have complex multiplication.

Modular form 2496.2.a.s

sage: E.q_eigenform(10)
 
\(q + q^{3} - 2 q^{5} + q^{9} - q^{13} - 2 q^{15} + 2 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.