Learn more

Refine search


Results (1-50 of 76 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images
24882.a1 24882.a \( 2 \cdot 3 \cdot 11 \cdot 13 \cdot 29 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 227253, 8024445]$ \(y^2+xy=x^3+x^2+227253x+8024445\) 8294.2.0.?
24882.b1 24882.b \( 2 \cdot 3 \cdot 11 \cdot 13 \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -758274861, 7891571471481]$ \(y^2+xy=x^3+x^2-758274861x+7891571471481\) 2.3.0.a.1, 4.12.0-4.c.1.2, 26.6.0.b.1, 52.24.0-52.g.1.1, 232.24.0.?, $\ldots$
24882.b2 24882.b \( 2 \cdot 3 \cdot 11 \cdot 13 \cdot 29 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 0, -754468201, 7976130332725]$ \(y^2+xy=x^3+x^2-754468201x+7976130332725\) 2.6.0.a.1, 4.12.0-2.a.1.1, 52.24.0-52.b.1.2, 116.24.0.?, 1508.48.0.?
24882.b3 24882.b \( 2 \cdot 3 \cdot 11 \cdot 13 \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -754468121, 7976132108901]$ \(y^2+xy=x^3+x^2-754468121x+7976132108901\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 52.12.0-4.c.1.2, 104.24.0.?, $\ldots$
24882.b4 24882.b \( 2 \cdot 3 \cdot 11 \cdot 13 \cdot 29 \) $0$ $\Z/4\Z$ $1$ $[1, 1, 0, -750662821, 8060575520305]$ \(y^2+xy=x^3+x^2-750662821x+8060575520305\) 2.3.0.a.1, 4.12.0-4.c.1.1, 104.24.0.?, 116.24.0.?, 3016.48.0.?
24882.c1 24882.c \( 2 \cdot 3 \cdot 11 \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $1.576284924$ $[1, 1, 0, -1150101, 474257025]$ \(y^2+xy=x^3+x^2-1150101x+474257025\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 44.12.0-4.c.1.1, 116.12.0.?, $\ldots$
24882.c2 24882.c \( 2 \cdot 3 \cdot 11 \cdot 13 \cdot 29 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.788142462$ $[1, 1, 0, -71881, 7387765]$ \(y^2+xy=x^3+x^2-71881x+7387765\) 2.6.0.a.1, 12.12.0-2.a.1.1, 44.12.0-2.a.1.1, 116.12.0.?, 132.24.0.?, $\ldots$
24882.c3 24882.c \( 2 \cdot 3 \cdot 11 \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $0.394071231$ $[1, 1, 0, -70141, 7764649]$ \(y^2+xy=x^3+x^2-70141x+7764649\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 88.12.0.?, 116.12.0.?, $\ldots$
24882.c4 24882.c \( 2 \cdot 3 \cdot 11 \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $1.576284924$ $[1, 1, 0, -4601, 108069]$ \(y^2+xy=x^3+x^2-4601x+108069\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 44.12.0-4.c.1.2, 66.6.0.a.1, $\ldots$
24882.d1 24882.d \( 2 \cdot 3 \cdot 11 \cdot 13 \cdot 29 \) $1$ $\mathsf{trivial}$ $0.290751594$ $[1, 1, 0, -58663, 5444461]$ \(y^2+xy=x^3+x^2-58663x+5444461\) 33176.2.0.?
24882.e1 24882.e \( 2 \cdot 3 \cdot 11 \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $2.645611024$ $[1, 1, 0, -33410, -2364336]$ \(y^2+xy=x^3+x^2-33410x-2364336\) 2.3.0.a.1, 26.6.0.b.1, 348.6.0.?, 4524.12.0.?
24882.e2 24882.e \( 2 \cdot 3 \cdot 11 \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $5.291222048$ $[1, 1, 0, -1950, -42588]$ \(y^2+xy=x^3+x^2-1950x-42588\) 2.3.0.a.1, 52.6.0.c.1, 174.6.0.?, 4524.12.0.?
24882.f1 24882.f \( 2 \cdot 3 \cdot 11 \cdot 13 \cdot 29 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 3300, -130608]$ \(y^2+xy=x^3+x^2+3300x-130608\) 8294.2.0.?
24882.g1 24882.g \( 2 \cdot 3 \cdot 11 \cdot 13 \cdot 29 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -38577, -3096747]$ \(y^2+xy=x^3+x^2-38577x-3096747\) 33176.2.0.?
24882.h1 24882.h \( 2 \cdot 3 \cdot 11 \cdot 13 \cdot 29 \) $1$ $\mathsf{trivial}$ $6.398512661$ $[1, 1, 0, -4647, -135243]$ \(y^2+xy=x^3+x^2-4647x-135243\) 33176.2.0.?
24882.i1 24882.i \( 2 \cdot 3 \cdot 11 \cdot 13 \cdot 29 \) $0$ $\Z/4\Z$ $1$ $[1, 1, 0, -3496284, 2512999632]$ \(y^2+xy=x^3+x^2-3496284x+2512999632\) 2.3.0.a.1, 4.12.0-4.c.1.1, 12.24.0-12.h.1.2, 104.24.0.?, 312.48.0.?
24882.i2 24882.i \( 2 \cdot 3 \cdot 11 \cdot 13 \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -2280284, -1311976752]$ \(y^2+xy=x^3+x^2-2280284x-1311976752\) 2.3.0.a.1, 4.12.0-4.c.1.2, 24.24.0-24.ba.1.16, 26.6.0.b.1, 52.24.0-52.g.1.1, $\ldots$
24882.i3 24882.i \( 2 \cdot 3 \cdot 11 \cdot 13 \cdot 29 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 0, -266844, 20517840]$ \(y^2+xy=x^3+x^2-266844x+20517840\) 2.6.0.a.1, 4.12.0-2.a.1.1, 12.24.0-12.a.1.1, 52.24.0-52.b.1.2, 156.48.0.?
24882.i4 24882.i \( 2 \cdot 3 \cdot 11 \cdot 13 \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, 60836, 2495440]$ \(y^2+xy=x^3+x^2+60836x+2495440\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 12.12.0-4.c.1.2, 24.24.0-24.ba.1.4, $\ldots$
24882.j1 24882.j \( 2 \cdot 3 \cdot 11 \cdot 13 \cdot 29 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -6, -108]$ \(y^2+xy=x^3+x^2-6x-108\) 33176.2.0.?
24882.k1 24882.k \( 2 \cdot 3 \cdot 11 \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $2.866145224$ $[1, 1, 0, -1769408, -904136910]$ \(y^2+xy=x^3+x^2-1769408x-904136910\) 2.3.0.a.1, 88.6.0.?, 1508.6.0.?, 33176.12.0.?
24882.k2 24882.k \( 2 \cdot 3 \cdot 11 \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $1.433072612$ $[1, 1, 0, -158898, -640800]$ \(y^2+xy=x^3+x^2-158898x-640800\) 2.3.0.a.1, 88.6.0.?, 754.6.0.?, 33176.12.0.?
24882.l1 24882.l \( 2 \cdot 3 \cdot 11 \cdot 13 \cdot 29 \) $1$ $\mathsf{trivial}$ $0.778793828$ $[1, 0, 1, 17625, 188842]$ \(y^2+xy+y=x^3+17625x+188842\) 33176.2.0.?
24882.m1 24882.m \( 2 \cdot 3 \cdot 11 \cdot 13 \cdot 29 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -84365, -9449080]$ \(y^2+xy+y=x^3-84365x-9449080\) 33176.2.0.?
24882.n1 24882.n \( 2 \cdot 3 \cdot 11 \cdot 13 \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -123092366, -525657570496]$ \(y^2+xy+y=x^3-123092366x-525657570496\) 2.3.0.a.1, 3.8.0-3.a.1.1, 6.24.0-6.a.1.2, 88.6.0.?, 264.48.0.?, $\ldots$
24882.n2 24882.n \( 2 \cdot 3 \cdot 11 \cdot 13 \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -7749006, -8088845504]$ \(y^2+xy+y=x^3-7749006x-8088845504\) 2.3.0.a.1, 3.8.0-3.a.1.1, 6.24.0-6.a.1.2, 88.6.0.?, 264.48.0.?, $\ldots$
24882.n3 24882.n \( 2 \cdot 3 \cdot 11 \cdot 13 \cdot 29 \) $0$ $\Z/6\Z$ $1$ $[1, 0, 1, -1876271, -357609310]$ \(y^2+xy+y=x^3-1876271x-357609310\) 2.3.0.a.1, 3.8.0-3.a.1.2, 6.24.0-6.a.1.4, 88.6.0.?, 264.48.0.?, $\ldots$
24882.n4 24882.n \( 2 \cdot 3 \cdot 11 \cdot 13 \cdot 29 \) $0$ $\Z/6\Z$ $1$ $[1, 0, 1, -1024431, 395076514]$ \(y^2+xy+y=x^3-1024431x+395076514\) 2.3.0.a.1, 3.8.0-3.a.1.2, 6.24.0-6.a.1.4, 88.6.0.?, 264.48.0.?, $\ldots$
24882.o1 24882.o \( 2 \cdot 3 \cdot 11 \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $2.710978926$ $[1, 0, 1, -109944786, 443711924836]$ \(y^2+xy+y=x^3-109944786x+443711924836\) 2.3.0.a.1, 88.6.0.?, 1508.6.0.?, 33176.12.0.?
24882.o2 24882.o \( 2 \cdot 3 \cdot 11 \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $5.421957852$ $[1, 0, 1, -6872146, 6931305572]$ \(y^2+xy+y=x^3-6872146x+6931305572\) 2.3.0.a.1, 88.6.0.?, 754.6.0.?, 33176.12.0.?
24882.p1 24882.p \( 2 \cdot 3 \cdot 11 \cdot 13 \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -22684756, 41584312514]$ \(y^2+xy+y=x^3-22684756x+41584312514\) 2.3.0.a.1, 26.6.0.b.1, 348.6.0.?, 4524.12.0.?
24882.p2 24882.p \( 2 \cdot 3 \cdot 11 \cdot 13 \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -1417796, 649667906]$ \(y^2+xy+y=x^3-1417796x+649667906\) 2.3.0.a.1, 52.6.0.c.1, 174.6.0.?, 4524.12.0.?
24882.q1 24882.q \( 2 \cdot 3 \cdot 11 \cdot 13 \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -175391, 13790162]$ \(y^2+xy+y=x^3-175391x+13790162\) 2.3.0.a.1, 88.6.0.?, 348.6.0.?, 7656.12.0.?
24882.q2 24882.q \( 2 \cdot 3 \cdot 11 \cdot 13 \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, 37569, 1608850]$ \(y^2+xy+y=x^3+37569x+1608850\) 2.3.0.a.1, 88.6.0.?, 174.6.0.?, 7656.12.0.?
24882.r1 24882.r \( 2 \cdot 3 \cdot 11 \cdot 13 \cdot 29 \) $1$ $\mathsf{trivial}$ $0.332655294$ $[1, 0, 1, 117, -1196]$ \(y^2+xy+y=x^3+117x-1196\) 33176.2.0.?
24882.s1 24882.s \( 2 \cdot 3 \cdot 11 \cdot 13 \cdot 29 \) $1$ $\mathsf{trivial}$ $3.309356319$ $[1, 0, 1, -697, -28708]$ \(y^2+xy+y=x^3-697x-28708\) 33176.2.0.?
24882.t1 24882.t \( 2 \cdot 3 \cdot 11 \cdot 13 \cdot 29 \) $1$ $\mathsf{trivial}$ $21.34412908$ $[1, 0, 1, -7840762, -8451397588]$ \(y^2+xy+y=x^3-7840762x-8451397588\) 3.8.0-3.a.1.1, 33176.2.0.?, 99528.16.0.?
24882.t2 24882.t \( 2 \cdot 3 \cdot 11 \cdot 13 \cdot 29 \) $1$ $\Z/3\Z$ $7.114709696$ $[1, 0, 1, -30427, -27110938]$ \(y^2+xy+y=x^3-30427x-27110938\) 3.8.0-3.a.1.2, 33176.2.0.?, 99528.16.0.?
24882.u1 24882.u \( 2 \cdot 3 \cdot 11 \cdot 13 \cdot 29 \) $0$ $\Z/3\Z$ $1$ $[1, 0, 1, -397, 3968]$ \(y^2+xy+y=x^3-397x+3968\) 3.8.0-3.a.1.2, 33176.2.0.?, 99528.16.0.?
24882.u2 24882.u \( 2 \cdot 3 \cdot 11 \cdot 13 \cdot 29 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, 3068, -44542]$ \(y^2+xy+y=x^3+3068x-44542\) 3.8.0-3.a.1.1, 33176.2.0.?, 99528.16.0.?
24882.v1 24882.v \( 2 \cdot 3 \cdot 11 \cdot 13 \cdot 29 \) $0$ $\Z/3\Z$ $1$ $[1, 0, 1, -182, 32942]$ \(y^2+xy+y=x^3-182x+32942\) 3.8.0-3.a.1.2, 696.16.0.?
24882.v2 24882.v \( 2 \cdot 3 \cdot 11 \cdot 13 \cdot 29 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, 1633, -889078]$ \(y^2+xy+y=x^3+1633x-889078\) 3.8.0-3.a.1.1, 696.16.0.?
24882.w1 24882.w \( 2 \cdot 3 \cdot 11 \cdot 13 \cdot 29 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, 43, 65]$ \(y^2+xy+y=x^3+x^2+43x+65\) 33176.2.0.?
24882.x1 24882.x \( 2 \cdot 3 \cdot 11 \cdot 13 \cdot 29 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, 769, -31813]$ \(y^2+xy+y=x^3+x^2+769x-31813\) 33176.2.0.?
24882.y1 24882.y \( 2 \cdot 3 \cdot 11 \cdot 13 \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -19813, 1065173]$ \(y^2+xy+y=x^3+x^2-19813x+1065173\) 2.3.0.a.1, 88.6.0.?, 348.6.0.?, 7656.12.0.?
24882.y2 24882.y \( 2 \cdot 3 \cdot 11 \cdot 13 \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -1223, 16697]$ \(y^2+xy+y=x^3+x^2-1223x+16697\) 2.3.0.a.1, 88.6.0.?, 174.6.0.?, 7656.12.0.?
24882.z1 24882.z \( 2 \cdot 3 \cdot 11 \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $1.010620392$ $[1, 1, 1, -1948, -33763]$ \(y^2+xy+y=x^3+x^2-1948x-33763\) 2.3.0.a.1, 88.6.0.?, 1508.6.0.?, 33176.12.0.?
24882.z2 24882.z \( 2 \cdot 3 \cdot 11 \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $0.505310196$ $[1, 1, 1, -188, 29]$ \(y^2+xy+y=x^3+x^2-188x+29\) 2.3.0.a.1, 88.6.0.?, 754.6.0.?, 33176.12.0.?
24882.ba1 24882.ba \( 2 \cdot 3 \cdot 11 \cdot 13 \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -19597, -1064077]$ \(y^2+xy+y=x^3+x^2-19597x-1064077\) 2.3.0.a.1, 66.6.0.a.1, 116.6.0.?, 3828.12.0.?
24882.ba2 24882.ba \( 2 \cdot 3 \cdot 11 \cdot 13 \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -19017, -1129269]$ \(y^2+xy+y=x^3+x^2-19017x-1129269\) 2.3.0.a.1, 116.6.0.?, 132.6.0.?, 3828.12.0.?
Next   displayed columns for results