Show commands for:
SageMath
sage: E = EllipticCurve("iz1")
sage: E.isogeny_class()
Elliptic curves in class 248430iz
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
248430.iz3 | 248430iz1 | [1, 0, 0, -29156, 1207296] | [2] | 1769472 | \(\Gamma_0(N)\)-optimal |
248430.iz2 | 248430iz2 | [1, 0, 0, -194776, -32214820] | [2, 2] | 3538944 | |
248430.iz4 | 248430iz3 | [1, 0, 0, 53654, -108681574] | [2] | 7077888 | |
248430.iz1 | 248430iz4 | [1, 0, 0, -3093126, -2094101010] | [2] | 7077888 |
Rank
sage: E.rank()
The elliptic curves in class 248430iz have rank \(0\).
Complex multiplication
The elliptic curves in class 248430iz do not have complex multiplication.Modular form 248430.2.a.iz
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.