Properties

Label 2480.n
Number of curves $4$
Conductor $2480$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("n1")
 
E.isogeny_class()
 

Elliptic curves in class 2480.n

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2480.n1 2480i4 \([0, -1, 0, -32736, -984064]\) \(947226559343329/443751840500\) \(1817607538688000\) \([2]\) \(13824\) \(1.6224\)  
2480.n2 2480i2 \([0, -1, 0, -27296, -1726720]\) \(549131937598369/307520\) \(1259601920\) \([2]\) \(4608\) \(1.0731\)  
2480.n3 2480i1 \([0, -1, 0, -1696, -26880]\) \(-131794519969/3174400\) \(-13002342400\) \([2]\) \(2304\) \(0.72649\) \(\Gamma_0(N)\)-optimal
2480.n4 2480i3 \([0, -1, 0, 7264, -120064]\) \(10347405816671/7447750000\) \(-30505984000000\) \([2]\) \(6912\) \(1.2758\)  

Rank

sage: E.rank()
 

The elliptic curves in class 2480.n have rank \(0\).

Complex multiplication

The elliptic curves in class 2480.n do not have complex multiplication.

Modular form 2480.2.a.n

sage: E.q_eigenform(10)
 
\(q + 2 q^{3} - q^{5} + 4 q^{7} + q^{9} - 4 q^{13} - 2 q^{15} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.