# Properties

 Label 247962bk2 Conductor $247962$ Discriminant $2.320\times 10^{32}$ j-invariant $$\frac{433744050935826360922067531137}{9612122270219882316693504}$$ CM no Rank $0$ Torsion structure $$\Z/{2}\Z \times \Z/{2}\Z$$

# Related objects

Show commands: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([1, 0, 0, -45575815582, -3672581344871740])

gp: E = ellinit([1, 0, 0, -45575815582, -3672581344871740])

magma: E := EllipticCurve([1, 0, 0, -45575815582, -3672581344871740]);

$$y^2+xy=x^3-45575815582x-3672581344871740$$

## Mordell-Weil group structure

$\Z/{2}\Z \times \Z/{2}\Z$

## Torsion generators

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

$$\left(-136996, 68498\right)$$, $$\left(245980, -122990\right)$$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$\left(-136996, 68498\right)$$, $$\left(245980, -122990\right)$$

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$247962$$ = $2 \cdot 3 \cdot 11 \cdot 13 \cdot 17^{2}$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $232013264533869054591069304651776$ = $2^{18} \cdot 3^{2} \cdot 11^{2} \cdot 13^{6} \cdot 17^{14}$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$\frac{433744050935826360922067531137}{9612122270219882316693504}$$ = $2^{-18} \cdot 3^{-2} \cdot 11^{-2} \cdot 13^{-6} \cdot 17^{-8} \cdot 19^{3} \cdot 739^{3} \cdot 539113^{3}$ Endomorphism ring: $\Z$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $4.9980304334583370792835710209\dots$ Stable Faltings height: $3.5814237614302290391588037120\dots$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $0$ sage: E.regulator()  magma: Regulator(E); Regulator: $1$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $0.010346695718604181556405623661\dots$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $1728$  = $( 2 \cdot 3^{2} )\cdot2\cdot2\cdot( 2 \cdot 3 )\cdot2^{2}$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $4$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $9$ = $3^2$ (exact) sage: r = E.rank(); sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()  gp: ar = ellanalyticrank(E); gp: ar[2]/factorial(ar[1])  magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12); Special value: $L(E,1)$ ≈ $10.056988238483264472826266198828974870$

## Modular invariants

Modular form 247962.2.a.bk

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q + q^{2} + q^{3} + q^{4} + 2q^{5} + q^{6} + q^{8} + q^{9} + 2q^{10} - q^{11} + q^{12} + q^{13} + 2q^{15} + q^{16} + q^{18} + 8q^{19} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 1361608704 $\Gamma_0(N)$-optimal: no Manin constant: 1

## Local data

This elliptic curve is not semistable. There are 5 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $18$ $I_{18}$ Split multiplicative -1 1 18 18
$3$ $2$ $I_{2}$ Split multiplicative -1 1 2 2
$11$ $2$ $I_{2}$ Non-split multiplicative 1 1 2 2
$13$ $6$ $I_{6}$ Split multiplicative -1 1 6 6
$17$ $4$ $I_8^{*}$ Additive 1 2 14 8

## Galois representations

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$2$ 2Cs 2.6.0.1

## $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]

All $p$-adic regulators are identically $1$ since the rank is $0$.

No Iwasawa invariant data is available for this curve.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 2.
Its isogeny class 247962bk consists of 2 curves linked by isogenies of degrees dividing 4.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \times \Z/{2}\Z$ are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $4$ $$\Q(\sqrt{17}, \sqrt{22})$$ $$\Z/2\Z \times \Z/4\Z$$ Not in database $4$ $$\Q(\sqrt{-17}, \sqrt{-39})$$ $$\Z/2\Z \times \Z/4\Z$$ Not in database $4$ $$\Q(\sqrt{-374}, \sqrt{-663})$$ $$\Z/2\Z \times \Z/4\Z$$ Not in database $8$ Deg 8 $$\Z/2\Z \times \Z/6\Z$$ Not in database $16$ Deg 16 $$\Z/4\Z \times \Z/4\Z$$ Not in database $16$ Deg 16 $$\Z/2\Z \times \Z/8\Z$$ Not in database $16$ Deg 16 $$\Z/2\Z \times \Z/8\Z$$ Not in database $16$ Deg 16 $$\Z/2\Z \times \Z/8\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.