Properties

Label 2475f
Number of curves $1$
Conductor $2475$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("f1")
 
E.isogeny_class()
 

Elliptic curves in class 2475f

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2475.b1 2475f1 \([1, -1, 1, -5, 22]\) \(-675/11\) \(-185625\) \([]\) \(192\) \(-0.30778\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 2475f1 has rank \(1\).

Complex multiplication

The elliptic curves in class 2475f do not have complex multiplication.

Modular form 2475.2.a.f

sage: E.q_eigenform(10)
 
\(q - q^{2} - q^{4} - 3 q^{7} + 3 q^{8} + q^{11} + 2 q^{13} + 3 q^{14} - q^{16} - 3 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display