Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
2475.a1 |
2475h3 |
2475.a |
2475h |
$3$ |
$25$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \) |
\( - 3^{6} \cdot 5^{6} \cdot 11 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
25.60.0.2 |
5B.4.2 |
$1650$ |
$1200$ |
$37$ |
$1$ |
$1$ |
|
$0$ |
$21000$ |
$1.850735$ |
$-52893159101157376/11$ |
$1.09296$ |
$7.00734$ |
$[0, 0, 1, -1759575, 898379406]$ |
\(y^2+y=x^3-1759575x+898379406\) |
5.12.0.a.2, 15.24.0-5.a.2.2, 22.2.0.a.1, 25.60.0.a.2, 75.120.0.?, $\ldots$ |
$[]$ |
2475.a2 |
2475h2 |
2475.a |
2475h |
$3$ |
$25$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \) |
\( - 3^{6} \cdot 5^{6} \cdot 11^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.60.0.1 |
5Cs.4.1 |
$1650$ |
$1200$ |
$37$ |
$1$ |
$1$ |
|
$0$ |
$4200$ |
$1.046015$ |
$-122023936/161051$ |
$1.01300$ |
$4.61429$ |
$[0, 0, 1, -2325, 78156]$ |
\(y^2+y=x^3-2325x+78156\) |
5.60.0.a.1, 15.120.0-5.a.1.2, 22.2.0.a.1, 110.120.5.?, 275.300.12.?, $\ldots$ |
$[]$ |
2475.a3 |
2475h1 |
2475.a |
2475h |
$3$ |
$25$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \) |
\( - 3^{6} \cdot 5^{6} \cdot 11 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
25.60.0.1 |
5B.4.1 |
$1650$ |
$1200$ |
$37$ |
$1$ |
$1$ |
|
$0$ |
$840$ |
$0.241296$ |
$-4096/11$ |
$0.82546$ |
$3.36525$ |
$[0, 0, 1, -75, -594]$ |
\(y^2+y=x^3-75x-594\) |
5.12.0.a.1, 15.24.0-5.a.1.2, 22.2.0.a.1, 25.60.0.a.1, 75.120.0.?, $\ldots$ |
$[]$ |
2475.b1 |
2475f1 |
2475.b |
2475f |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \) |
\( - 3^{3} \cdot 5^{4} \cdot 11 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$132$ |
$2$ |
$0$ |
$0.117397198$ |
$1$ |
|
$8$ |
$192$ |
$-0.307781$ |
$-675/11$ |
$1.13667$ |
$2.51102$ |
$[1, -1, 1, -5, 22]$ |
\(y^2+xy+y=x^3-x^2-5x+22\) |
132.2.0.? |
$[(4, 5)]$ |
2475.c1 |
2475d2 |
2475.c |
2475d |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \) |
\( 3^{9} \cdot 5^{6} \cdot 11^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$132$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1920$ |
$0.865335$ |
$19034163/121$ |
$0.94120$ |
$4.64626$ |
$[1, -1, 1, -3755, -87128]$ |
\(y^2+xy+y=x^3-x^2-3755x-87128\) |
2.3.0.a.1, 12.6.0.a.1, 44.6.0.e.1, 132.12.0.? |
$[]$ |
2475.c2 |
2475d1 |
2475.c |
2475d |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \) |
\( 3^{9} \cdot 5^{6} \cdot 11 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$132$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$960$ |
$0.518761$ |
$19683/11$ |
$1.13667$ |
$3.76653$ |
$[1, -1, 1, -380, 622]$ |
\(y^2+xy+y=x^3-x^2-380x+622\) |
2.3.0.a.1, 12.6.0.b.1, 44.6.0.e.1, 66.6.0.a.1, 132.12.0.? |
$[]$ |
2475.d1 |
2475b1 |
2475.d |
2475b |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \) |
\( - 3^{9} \cdot 5^{10} \cdot 11 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$132$ |
$2$ |
$0$ |
$3.114581138$ |
$1$ |
|
$2$ |
$2880$ |
$1.046244$ |
$-675/11$ |
$1.13667$ |
$4.59040$ |
$[1, -1, 1, -1055, -70928]$ |
\(y^2+xy+y=x^3-x^2-1055x-70928\) |
132.2.0.? |
$[(88, 671)]$ |
2475.e1 |
2475k1 |
2475.e |
2475k |
$2$ |
$3$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \) |
\( - 3^{9} \cdot 5^{8} \cdot 11^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$6$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2880$ |
$1.052814$ |
$-56197120/3267$ |
$0.94162$ |
$4.78722$ |
$[0, 0, 1, -5250, -153594]$ |
\(y^2+y=x^3-5250x-153594\) |
3.8.0-3.a.1.1, 6.16.0-6.b.1.1 |
$[]$ |
2475.e2 |
2475k2 |
2475.e |
2475k |
$2$ |
$3$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \) |
\( - 3^{7} \cdot 5^{8} \cdot 11^{6} \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$6$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$8640$ |
$1.602121$ |
$8990228480/5314683$ |
$1.15904$ |
$5.42444$ |
$[0, 0, 1, 28500, -271719]$ |
\(y^2+y=x^3+28500x-271719\) |
3.8.0-3.a.1.2, 6.16.0-6.b.1.2 |
$[]$ |
2475.f1 |
2475i1 |
2475.f |
2475i |
$2$ |
$3$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \) |
\( - 3^{9} \cdot 5^{2} \cdot 11^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$30$ |
$16$ |
$0$ |
$0.553485365$ |
$1$ |
|
$4$ |
$576$ |
$0.248095$ |
$-56197120/3267$ |
$0.94162$ |
$3.55140$ |
$[0, 0, 1, -210, -1229]$ |
\(y^2+y=x^3-210x-1229\) |
3.4.0.a.1, 6.8.0.b.1, 15.8.0-3.a.1.1, 30.16.0-6.b.1.1 |
$[(31, 148)]$ |
2475.f2 |
2475i2 |
2475.f |
2475i |
$2$ |
$3$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \) |
\( - 3^{7} \cdot 5^{2} \cdot 11^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$30$ |
$16$ |
$0$ |
$0.184495121$ |
$1$ |
|
$4$ |
$1728$ |
$0.797401$ |
$8990228480/5314683$ |
$1.15904$ |
$4.18863$ |
$[0, 0, 1, 1140, -2174]$ |
\(y^2+y=x^3+1140x-2174\) |
3.4.0.a.1, 6.8.0.b.1, 15.8.0-3.a.1.2, 30.16.0-6.b.1.2 |
$[(4, 49)]$ |
2475.g1 |
2475g3 |
2475.g |
2475g |
$4$ |
$4$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \) |
\( 3^{9} \cdot 5^{6} \cdot 11^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$1320$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$6144$ |
$1.341393$ |
$347873904937/395307$ |
$1.00913$ |
$5.48035$ |
$[1, -1, 0, -32967, -2293434]$ |
\(y^2+xy=x^3-x^2-32967x-2293434\) |
2.3.0.a.1, 4.6.0.c.1, 12.12.0.h.1, 20.12.0-4.c.1.1, 60.24.0-12.h.1.1, $\ldots$ |
$[]$ |
2475.g2 |
2475g2 |
2475.g |
2475g |
$4$ |
$4$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \) |
\( 3^{12} \cdot 5^{6} \cdot 11^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$660$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$3072$ |
$0.994820$ |
$169112377/88209$ |
$1.00669$ |
$4.50402$ |
$[1, -1, 0, -2592, -15309]$ |
\(y^2+xy=x^3-x^2-2592x-15309\) |
2.6.0.a.1, 12.12.0.a.1, 20.12.0-2.a.1.1, 44.12.0.b.1, 60.24.0-12.a.1.2, $\ldots$ |
$[]$ |
2475.g3 |
2475g1 |
2475.g |
2475g |
$4$ |
$4$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \) |
\( 3^{9} \cdot 5^{6} \cdot 11 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$1320$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$1536$ |
$0.648246$ |
$30664297/297$ |
$1.09706$ |
$4.28550$ |
$[1, -1, 0, -1467, 21816]$ |
\(y^2+xy=x^3-x^2-1467x+21816\) |
2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.2, 24.12.0.ba.1, 66.6.0.a.1, $\ldots$ |
$[]$ |
2475.g4 |
2475g4 |
2475.g |
2475g |
$4$ |
$4$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \) |
\( - 3^{18} \cdot 5^{6} \cdot 11 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$1320$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$6144$ |
$1.341393$ |
$9090072503/5845851$ |
$1.03763$ |
$5.01392$ |
$[1, -1, 0, 9783, -126684]$ |
\(y^2+xy=x^3-x^2+9783x-126684\) |
2.3.0.a.1, 4.6.0.c.1, 22.6.0.a.1, 24.12.0.ba.1, 40.12.0-4.c.1.5, $\ldots$ |
$[]$ |
2475.h1 |
2475e1 |
2475.h |
2475e |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \) |
\( - 3^{9} \cdot 5^{4} \cdot 11 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$132$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$576$ |
$0.241525$ |
$-675/11$ |
$1.13667$ |
$3.35459$ |
$[1, -1, 0, -42, -559]$ |
\(y^2+xy=x^3-x^2-42x-559\) |
132.2.0.? |
$[]$ |
2475.i1 |
2475j3 |
2475.i |
2475j |
$4$ |
$4$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \) |
\( 3^{6} \cdot 5^{10} \cdot 11 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$1320$ |
$48$ |
$0$ |
$4.314990037$ |
$1$ |
|
$0$ |
$3072$ |
$1.068359$ |
$22930509321/6875$ |
$1.07717$ |
$5.13233$ |
$[1, -1, 0, -13317, -588034]$ |
\(y^2+xy=x^3-x^2-13317x-588034\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 40.12.0.z.1, 44.12.0.h.1, $\ldots$ |
$[(-265/2, 363/2)]$ |
2475.i2 |
2475j4 |
2475.i |
2475j |
$4$ |
$4$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \) |
\( 3^{6} \cdot 5^{7} \cdot 11^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$1320$ |
$48$ |
$0$ |
$1.078747509$ |
$1$ |
|
$4$ |
$3072$ |
$1.068359$ |
$2749884201/73205$ |
$0.94591$ |
$4.86091$ |
$[1, -1, 0, -6567, 201716]$ |
\(y^2+xy=x^3-x^2-6567x+201716\) |
2.3.0.a.1, 4.6.0.c.1, 10.6.0.a.1, 12.12.0-4.c.1.1, 20.12.0.g.1, $\ldots$ |
$[(28, 184)]$ |
2475.i3 |
2475j2 |
2475.i |
2475j |
$4$ |
$4$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \) |
\( 3^{6} \cdot 5^{8} \cdot 11^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$660$ |
$48$ |
$0$ |
$2.157495018$ |
$1$ |
|
$6$ |
$1536$ |
$0.721786$ |
$8120601/3025$ |
$1.05560$ |
$4.11546$ |
$[1, -1, 0, -942, -6409]$ |
\(y^2+xy=x^3-x^2-942x-6409\) |
2.6.0.a.1, 12.12.0-2.a.1.1, 20.12.0.b.1, 44.12.0.a.1, 60.24.0-20.b.1.2, $\ldots$ |
$[(-10, 49)]$ |
2475.i4 |
2475j1 |
2475.i |
2475j |
$4$ |
$4$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \) |
\( - 3^{6} \cdot 5^{7} \cdot 11 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$1320$ |
$48$ |
$0$ |
$4.314990037$ |
$1$ |
|
$3$ |
$768$ |
$0.375213$ |
$59319/55$ |
$0.79207$ |
$3.48592$ |
$[1, -1, 0, 183, -784]$ |
\(y^2+xy=x^3-x^2+183x-784\) |
2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 40.12.0.z.1, 88.12.0.?, $\ldots$ |
$[(68, 534)]$ |
2475.j1 |
2475a2 |
2475.j |
2475a |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \) |
\( 3^{3} \cdot 5^{6} \cdot 11^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$132$ |
$12$ |
$0$ |
$0.984594131$ |
$1$ |
|
$4$ |
$640$ |
$0.316029$ |
$19034163/121$ |
$0.94120$ |
$3.80269$ |
$[1, -1, 0, -417, 3366]$ |
\(y^2+xy=x^3-x^2-417x+3366\) |
2.3.0.a.1, 12.6.0.a.1, 44.6.0.e.1, 132.12.0.? |
$[(10, 6)]$ |
2475.j2 |
2475a1 |
2475.j |
2475a |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \) |
\( 3^{3} \cdot 5^{6} \cdot 11 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$132$ |
$12$ |
$0$ |
$1.969188262$ |
$1$ |
|
$3$ |
$320$ |
$-0.030545$ |
$19683/11$ |
$1.13667$ |
$2.92296$ |
$[1, -1, 0, -42, -9]$ |
\(y^2+xy=x^3-x^2-42x-9\) |
2.3.0.a.1, 12.6.0.b.1, 44.6.0.e.1, 66.6.0.a.1, 132.12.0.? |
$[(-2, 9)]$ |
2475.k1 |
2475c1 |
2475.k |
2475c |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \) |
\( - 3^{3} \cdot 5^{10} \cdot 11 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$132$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$960$ |
$0.496938$ |
$-675/11$ |
$1.13667$ |
$3.74683$ |
$[1, -1, 0, -117, 2666]$ |
\(y^2+xy=x^3-x^2-117x+2666\) |
132.2.0.? |
$[]$ |