Learn more

Refine search


Results (23 matches)

  Download to        
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
2475.a1 2475.a \( 3^{2} \cdot 5^{2} \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -1759575, 898379406]$ \(y^2+y=x^3-1759575x+898379406\)
2475.a2 2475.a \( 3^{2} \cdot 5^{2} \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -2325, 78156]$ \(y^2+y=x^3-2325x+78156\)
2475.a3 2475.a \( 3^{2} \cdot 5^{2} \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -75, -594]$ \(y^2+y=x^3-75x-594\)
2475.b1 2475.b \( 3^{2} \cdot 5^{2} \cdot 11 \) $1$ $\mathsf{trivial}$ $0.117397198$ $[1, -1, 1, -5, 22]$ \(y^2+xy+y=x^3-x^2-5x+22\)
2475.c1 2475.c \( 3^{2} \cdot 5^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -3755, -87128]$ \(y^2+xy+y=x^3-x^2-3755x-87128\)
2475.c2 2475.c \( 3^{2} \cdot 5^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -380, 622]$ \(y^2+xy+y=x^3-x^2-380x+622\)
2475.d1 2475.d \( 3^{2} \cdot 5^{2} \cdot 11 \) $1$ $\mathsf{trivial}$ $3.114581138$ $[1, -1, 1, -1055, -70928]$ \(y^2+xy+y=x^3-x^2-1055x-70928\)
2475.e1 2475.e \( 3^{2} \cdot 5^{2} \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -5250, -153594]$ \(y^2+y=x^3-5250x-153594\)
2475.e2 2475.e \( 3^{2} \cdot 5^{2} \cdot 11 \) $0$ $\Z/3\Z$ $1$ $[0, 0, 1, 28500, -271719]$ \(y^2+y=x^3+28500x-271719\)
2475.f1 2475.f \( 3^{2} \cdot 5^{2} \cdot 11 \) $1$ $\mathsf{trivial}$ $0.553485365$ $[0, 0, 1, -210, -1229]$ \(y^2+y=x^3-210x-1229\)
2475.f2 2475.f \( 3^{2} \cdot 5^{2} \cdot 11 \) $1$ $\mathsf{trivial}$ $0.184495121$ $[0, 0, 1, 1140, -2174]$ \(y^2+y=x^3+1140x-2174\)
2475.g1 2475.g \( 3^{2} \cdot 5^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -32967, -2293434]$ \(y^2+xy=x^3-x^2-32967x-2293434\)
2475.g2 2475.g \( 3^{2} \cdot 5^{2} \cdot 11 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 0, -2592, -15309]$ \(y^2+xy=x^3-x^2-2592x-15309\)
2475.g3 2475.g \( 3^{2} \cdot 5^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -1467, 21816]$ \(y^2+xy=x^3-x^2-1467x+21816\)
2475.g4 2475.g \( 3^{2} \cdot 5^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 9783, -126684]$ \(y^2+xy=x^3-x^2+9783x-126684\)
2475.h1 2475.h \( 3^{2} \cdot 5^{2} \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -42, -559]$ \(y^2+xy=x^3-x^2-42x-559\)
2475.i1 2475.i \( 3^{2} \cdot 5^{2} \cdot 11 \) $1$ $\Z/2\Z$ $4.314990037$ $[1, -1, 0, -13317, -588034]$ \(y^2+xy=x^3-x^2-13317x-588034\)
2475.i2 2475.i \( 3^{2} \cdot 5^{2} \cdot 11 \) $1$ $\Z/2\Z$ $1.078747509$ $[1, -1, 0, -6567, 201716]$ \(y^2+xy=x^3-x^2-6567x+201716\)
2475.i3 2475.i \( 3^{2} \cdot 5^{2} \cdot 11 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.157495018$ $[1, -1, 0, -942, -6409]$ \(y^2+xy=x^3-x^2-942x-6409\)
2475.i4 2475.i \( 3^{2} \cdot 5^{2} \cdot 11 \) $1$ $\Z/2\Z$ $4.314990037$ $[1, -1, 0, 183, -784]$ \(y^2+xy=x^3-x^2+183x-784\)
2475.j1 2475.j \( 3^{2} \cdot 5^{2} \cdot 11 \) $1$ $\Z/2\Z$ $0.984594131$ $[1, -1, 0, -417, 3366]$ \(y^2+xy=x^3-x^2-417x+3366\)
2475.j2 2475.j \( 3^{2} \cdot 5^{2} \cdot 11 \) $1$ $\Z/2\Z$ $1.969188262$ $[1, -1, 0, -42, -9]$ \(y^2+xy=x^3-x^2-42x-9\)
2475.k1 2475.k \( 3^{2} \cdot 5^{2} \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -117, 2666]$ \(y^2+xy=x^3-x^2-117x+2666\)
  Download to