Properties

Label 246202.b
Number of curves $1$
Conductor $246202$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("b1")
 
E.isogeny_class()
 

Elliptic curves in class 246202.b

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
246202.b1 246202b1 \([1, -1, 0, 20436665, -105824992067]\) \(137623619399231089568709/784916686600277884928\) \(-5383743553391306012721152\) \([]\) \(156960000\) \(3.4274\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 246202.b1 has rank \(0\).

Complex multiplication

The elliptic curves in class 246202.b do not have complex multiplication.

Modular form 246202.2.a.b

sage: E.q_eigenform(10)
 
\(q - q^{2} - 3 q^{3} + q^{4} + 4 q^{5} + 3 q^{6} - q^{7} - q^{8} + 6 q^{9} - 4 q^{10} + q^{11} - 3 q^{12} + q^{13} + q^{14} - 12 q^{15} + q^{16} - 7 q^{17} - 6 q^{18} + O(q^{20})\) Copy content Toggle raw display