Learn more

Refine search


Results (43 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images
246202.a1 246202.a \( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) $1$ $\mathsf{trivial}$ $1.389005562$ $[1, -1, 0, -2682478, 1953691348]$ \(y^2+xy=x^3-x^2-2682478x+1953691348\) 12958.2.0.?
246202.b1 246202.b \( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 20436665, -105824992067]$ \(y^2+xy=x^3-x^2+20436665x-105824992067\) 152.2.0.?
246202.c1 246202.c \( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -246209, -47270795]$ \(y^2+xy=x^3+x^2-246209x-47270795\) 1364.2.0.?
246202.d1 246202.d \( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -1261, -18403]$ \(y^2+xy=x^3+x^2-1261x-18403\) 12958.2.0.?
246202.e1 246202.e \( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) $2$ $\mathsf{trivial}$ $6.794751100$ $[1, -1, 0, 129712, 45051136]$ \(y^2+xy=x^3-x^2+129712x+45051136\) 2728.2.0.?
246202.f1 246202.f \( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) $1$ $\Z/2\Z$ $4.534461515$ $[1, -1, 0, -243923, 38208381]$ \(y^2+xy=x^3-x^2-243923x+38208381\) 2.3.0.a.1, 152.6.0.?, 2728.6.0.?, 25916.6.0.?, 51832.12.0.?
246202.f2 246202.f \( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) $1$ $\Z/2\Z$ $9.068923031$ $[1, -1, 0, 30437, 3474405]$ \(y^2+xy=x^3-x^2+30437x+3474405\) 2.3.0.a.1, 152.6.0.?, 2728.6.0.?, 12958.6.0.?, 51832.12.0.?
246202.g1 246202.g \( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) $2$ $\mathsf{trivial}$ $1.697185317$ $[1, -1, 0, -182192, 222694904]$ \(y^2+xy=x^3-x^2-182192x+222694904\) 88.2.0.?
246202.h1 246202.h \( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) $2$ $\mathsf{trivial}$ $2.630903135$ $[1, -1, 0, -362, 8748]$ \(y^2+xy=x^3-x^2-362x+8748\) 88.2.0.?
246202.i1 246202.i \( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) $1$ $\mathsf{trivial}$ $68.03955834$ $[1, -1, 0, -1764455, -1111590337]$ \(y^2+xy=x^3-x^2-1764455x-1111590337\) 2728.2.0.?
246202.j1 246202.j \( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) $1$ $\mathsf{trivial}$ $1.402002042$ $[1, 0, 1, -4340, 121822]$ \(y^2+xy+y=x^3-4340x+121822\) 12958.2.0.?
246202.k1 246202.k \( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) $1$ $\mathsf{trivial}$ $2.096121168$ $[1, 0, 1, -732838, -262520840]$ \(y^2+xy+y=x^3-732838x-262520840\) 5.12.0.a.1, 95.24.0.?, 3410.24.0.?, 12958.2.0.?, 64790.48.1.?
246202.k2 246202.k \( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) $1$ $\mathsf{trivial}$ $10.48060584$ $[1, 0, 1, 617302, 18429452680]$ \(y^2+xy+y=x^3+617302x+18429452680\) 5.12.0.a.2, 95.24.0.?, 3410.24.0.?, 12958.2.0.?, 64790.48.1.?
246202.l1 246202.l \( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -217, 301372]$ \(y^2+xy+y=x^3-217x+301372\) 12958.2.0.?
246202.m1 246202.m \( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) $1$ $\mathsf{trivial}$ $5.311638710$ $[1, 1, 0, -431041, -192502539]$ \(y^2+xy=x^3+x^2-431041x-192502539\) 2728.2.0.?
246202.n1 246202.n \( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) $1$ $\mathsf{trivial}$ $8.758421021$ $[1, 1, 0, 7574, -1802484]$ \(y^2+xy=x^3+x^2+7574x-1802484\) 88.2.0.?
246202.o1 246202.o \( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) $1$ $\mathsf{trivial}$ $173.9957830$ $[1, 1, 0, -281039951, -1813891603291]$ \(y^2+xy=x^3+x^2-281039951x-1813891603291\) 88.2.0.?
246202.p1 246202.p \( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) $1$ $\mathsf{trivial}$ $97.63528777$ $[1, 1, 0, 83943684, -127344660784]$ \(y^2+xy=x^3+x^2+83943684x-127344660784\) 2728.2.0.?
246202.q1 246202.q \( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -723090, 267899894]$ \(y^2+xy=x^3+x^2-723090x+267899894\) 3.4.0.a.1, 9.12.0.a.1, 57.8.0-3.a.1.2, 171.24.0.?, 279.36.0.?, $\ldots$
246202.q2 246202.q \( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -11920, -524544]$ \(y^2+xy=x^3+x^2-11920x-524544\) 3.4.0.a.1, 9.12.0.a.1, 57.8.0-3.a.1.1, 171.24.0.?, 279.36.0.?, $\ldots$
246202.q3 246202.q \( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 60280, -1422712]$ \(y^2+xy=x^3+x^2+60280x-1422712\) 3.12.0.a.1, 57.24.0-3.a.1.1, 279.36.0.?, 2728.2.0.?, 5301.72.0.?, $\ldots$
246202.r1 246202.r \( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -95311, 4638117]$ \(y^2+xy=x^3+x^2-95311x+4638117\) 44.2.0.a.1
246202.s1 246202.s \( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) $1$ $\mathsf{trivial}$ $21.48083125$ $[1, -1, 0, -31294, -4557484]$ \(y^2+xy=x^3-x^2-31294x-4557484\) 12958.2.0.?
246202.t1 246202.t \( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) $1$ $\mathsf{trivial}$ $0.374499833$ $[1, -1, 1, -78019749, 265269225309]$ \(y^2+xy+y=x^3-x^2-78019749x+265269225309\) 12958.2.0.?
246202.u1 246202.u \( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) $1$ $\mathsf{trivial}$ $0.482172811$ $[1, -1, 1, -87, 687]$ \(y^2+xy+y=x^3-x^2-87x+687\) 12958.2.0.?
246202.v1 246202.v \( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) $2$ $\mathsf{trivial}$ $1.176031847$ $[1, 0, 0, 21, 265]$ \(y^2+xy=x^3+21x+265\) 88.2.0.?
246202.w1 246202.w \( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) $2$ $\mathsf{trivial}$ $0.764210116$ $[1, 0, 0, -778504, 264372288]$ \(y^2+xy=x^3-778504x+264372288\) 88.2.0.?
246202.x1 246202.x \( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) $1$ $\mathsf{trivial}$ $6.843967730$ $[1, 0, 0, 5588, 31482]$ \(y^2+xy=x^3+5588x+31482\) 2728.2.0.?
246202.y1 246202.y \( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) $1$ $\mathsf{trivial}$ $0.574121675$ $[1, 0, 0, -264, -704]$ \(y^2+xy=x^3-264x-704\) 44.2.0.a.1
246202.z1 246202.z \( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) $1$ $\mathsf{trivial}$ $0.655287733$ $[1, 1, 1, -50367, 44604517]$ \(y^2+xy+y=x^3+x^2-50367x+44604517\) 3.4.0.a.1, 57.8.0-3.a.1.2, 2046.8.0.?, 12958.2.0.?, 38874.16.0.?
246202.z2 246202.z \( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) $1$ $\mathsf{trivial}$ $1.965863199$ $[1, 1, 1, 5588, -1636695]$ \(y^2+xy+y=x^3+x^2+5588x-1636695\) 3.4.0.a.1, 57.8.0-3.a.1.1, 2046.8.0.?, 12958.2.0.?, 38874.16.0.?
246202.ba1 246202.ba \( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) $1$ $\mathsf{trivial}$ $0.359238350$ $[1, 1, 1, -8464194, -9680945585]$ \(y^2+xy+y=x^3+x^2-8464194x-9680945585\) 152.2.0.?
246202.bb1 246202.bb \( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, -78164, -2067268587]$ \(y^2+xy+y=x^3+x^2-78164x-2067268587\) 12958.2.0.?
246202.bc1 246202.bc \( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) $1$ $\Z/2\Z$ $0.912969109$ $[1, -1, 1, -676, -5393]$ \(y^2+xy+y=x^3-x^2-676x-5393\) 2.3.0.a.1, 152.6.0.?, 2728.6.0.?, 25916.6.0.?, 51832.12.0.?
246202.bc2 246202.bc \( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) $1$ $\Z/2\Z$ $1.825938218$ $[1, -1, 1, 84, -529]$ \(y^2+xy+y=x^3-x^2+84x-529\) 2.3.0.a.1, 152.6.0.?, 2728.6.0.?, 12958.6.0.?, 51832.12.0.?
246202.bd1 246202.bd \( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) $1$ $\mathsf{trivial}$ $6.906216553$ $[1, -1, 1, -471895, -126294897]$ \(y^2+xy+y=x^3-x^2-471895x-126294897\) 2728.2.0.?
246202.be1 246202.be \( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) $1$ $\mathsf{trivial}$ $0.815429685$ $[1, -1, 1, -505, -32335]$ \(y^2+xy+y=x^3-x^2-505x-32335\) 88.2.0.?
246202.bf1 246202.bf \( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) $1$ $\mathsf{trivial}$ $12.72078873$ $[1, -1, 1, -130750, -59348891]$ \(y^2+xy+y=x^3-x^2-130750x-59348891\) 88.2.0.?
246202.bg1 246202.bg \( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) $1$ $\mathsf{trivial}$ $0.076948009$ $[1, 0, 0, -11407427, 16223908289]$ \(y^2+xy=x^3-11407427x+16223908289\) 12958.2.0.?
246202.bh1 246202.bh \( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) $1$ $\mathsf{trivial}$ $0.966172113$ $[1, 0, 0, -682, 6820]$ \(y^2+xy=x^3-682x+6820\) 1364.2.0.?
246202.bi1 246202.bi \( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 0, -455409, 122583401]$ \(y^2+xy=x^3-455409x+122583401\) 12958.2.0.?
246202.bj1 246202.bj \( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) $1$ $\mathsf{trivial}$ $15.88825681$ $[1, -1, 1, -7429809, -7928214623]$ \(y^2+xy+y=x^3-x^2-7429809x-7928214623\) 12958.2.0.?
246202.bk1 246202.bk \( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, 7377635997, 725816732407459]$ \(y^2+xy+y=x^3-x^2+7377635997x+725816732407459\) 152.2.0.?
  displayed columns for results