Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
246202.a1 |
246202a1 |
246202.a |
246202a |
$1$ |
$1$ |
\( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) |
\( - 2^{8} \cdot 11^{5} \cdot 19^{9} \cdot 31 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$12958$ |
$2$ |
$0$ |
$1.389005562$ |
$1$ |
|
$4$ |
$20736000$ |
$2.679272$ |
$-45374380016993217/8766492948224$ |
$0.92337$ |
$4.53592$ |
$[1, -1, 0, -2682478, 1953691348]$ |
\(y^2+xy=x^3-x^2-2682478x+1953691348\) |
12958.2.0.? |
$[(5116, 346890)]$ |
246202.b1 |
246202b1 |
246202.b |
246202b |
$1$ |
$1$ |
\( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) |
\( - 2^{15} \cdot 11^{10} \cdot 19^{3} \cdot 31^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$156960000$ |
$3.427441$ |
$137623619399231089568709/784916686600277884928$ |
$1.07594$ |
$5.17912$ |
$[1, -1, 0, 20436665, -105824992067]$ |
\(y^2+xy=x^3-x^2+20436665x-105824992067\) |
152.2.0.? |
$[]$ |
246202.c1 |
246202c1 |
246202.c |
246202c |
$1$ |
$1$ |
\( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) |
\( - 2^{10} \cdot 11 \cdot 19^{8} \cdot 31 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1364$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1805760$ |
$1.888130$ |
$-97187281273/349184$ |
$0.82503$ |
$3.93604$ |
$[1, 1, 0, -246209, -47270795]$ |
\(y^2+xy=x^3+x^2-246209x-47270795\) |
1364.2.0.? |
$[]$ |
246202.d1 |
246202d1 |
246202.d |
246202d |
$1$ |
$1$ |
\( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) |
\( - 2^{12} \cdot 11 \cdot 19^{3} \cdot 31 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$12958$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$184320$ |
$0.681020$ |
$-32370260203/1396736$ |
$0.82844$ |
$2.66683$ |
$[1, 1, 0, -1261, -18403]$ |
\(y^2+xy=x^3+x^2-1261x-18403\) |
12958.2.0.? |
$[]$ |
246202.e1 |
246202e1 |
246202.e |
246202e |
$1$ |
$1$ |
\( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) |
\( - 2^{19} \cdot 11^{3} \cdot 19^{6} \cdot 31 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2728$ |
$2$ |
$0$ |
$6.794751100$ |
$1$ |
|
$6$ |
$3250368$ |
$2.137917$ |
$5130275528223/21632647168$ |
$1.01888$ |
$3.92876$ |
$[1, -1, 0, 129712, 45051136]$ |
\(y^2+xy=x^3-x^2+129712x+45051136\) |
2728.2.0.? |
$[(-71, 5992), (3687/2, 242515/2)]$ |
246202.f1 |
246202f2 |
246202.f |
246202f |
$2$ |
$2$ |
\( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) |
\( 2^{3} \cdot 11^{2} \cdot 19^{9} \cdot 31^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$51832$ |
$12$ |
$0$ |
$4.534461515$ |
$1$ |
|
$2$ |
$2626560$ |
$2.071571$ |
$4973940243/930248$ |
$0.82344$ |
$3.93328$ |
$[1, -1, 0, -243923, 38208381]$ |
\(y^2+xy=x^3-x^2-243923x+38208381\) |
2.3.0.a.1, 152.6.0.?, 2728.6.0.?, 25916.6.0.?, 51832.12.0.? |
$[(-13, 6439)]$ |
246202.f2 |
246202f1 |
246202.f |
246202f |
$2$ |
$2$ |
\( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) |
\( - 2^{6} \cdot 11 \cdot 19^{9} \cdot 31 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$51832$ |
$12$ |
$0$ |
$9.068923031$ |
$1$ |
|
$1$ |
$1313280$ |
$1.725000$ |
$9663597/21824$ |
$0.86067$ |
$3.51617$ |
$[1, -1, 0, 30437, 3474405]$ |
\(y^2+xy=x^3-x^2+30437x+3474405\) |
2.3.0.a.1, 152.6.0.?, 2728.6.0.?, 12958.6.0.?, 51832.12.0.? |
$[(4639/5, 480302/5)]$ |
246202.g1 |
246202g1 |
246202.g |
246202g |
$1$ |
$1$ |
\( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) |
\( - 2^{3} \cdot 11^{5} \cdot 19^{8} \cdot 31^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$88$ |
$2$ |
$0$ |
$1.697185317$ |
$1$ |
|
$8$ |
$3447360$ |
$2.388077$ |
$-39380765625/1238160088$ |
$0.96891$ |
$4.18606$ |
$[1, -1, 0, -182192, 222694904]$ |
\(y^2+xy=x^3-x^2-182192x+222694904\) |
88.2.0.? |
$[(271, 13763), (-17051/5, 719683/5)]$ |
246202.h1 |
246202h1 |
246202.h |
246202h |
$1$ |
$1$ |
\( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) |
\( - 2^{3} \cdot 11 \cdot 19^{2} \cdot 31^{4} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$88$ |
$2$ |
$0$ |
$2.630903135$ |
$1$ |
|
$4$ |
$152064$ |
$0.692497$ |
$-14555156625/81269848$ |
$0.86841$ |
$2.55000$ |
$[1, -1, 0, -362, 8748]$ |
\(y^2+xy=x^3-x^2-362x+8748\) |
88.2.0.? |
$[(11, 72), (37/3, 2254/3)]$ |
246202.i1 |
246202i1 |
246202.i |
246202i |
$1$ |
$1$ |
\( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) |
\( - 2 \cdot 11^{3} \cdot 19^{12} \cdot 31 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2728$ |
$2$ |
$0$ |
$68.03955834$ |
$1$ |
|
$0$ |
$13582080$ |
$2.601936$ |
$-12913203796328529/3882320191882$ |
$0.95887$ |
$4.44518$ |
$[1, -1, 0, -1764455, -1111590337]$ |
\(y^2+xy=x^3-x^2-1764455x-1111590337\) |
2728.2.0.? |
$[(321523817464334661978053266759/6396091496831, 178442074330433114740064678780038804911551268/6396091496831)]$ |
246202.j1 |
246202j1 |
246202.j |
246202j |
$1$ |
$1$ |
\( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) |
\( - 2^{2} \cdot 11 \cdot 19^{7} \cdot 31 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$12958$ |
$2$ |
$0$ |
$1.402002042$ |
$1$ |
|
$4$ |
$460800$ |
$1.051409$ |
$-192100033/25916$ |
$0.72582$ |
$2.97648$ |
$[1, 0, 1, -4340, 121822]$ |
\(y^2+xy+y=x^3-4340x+121822\) |
12958.2.0.? |
$[(-65, 393)]$ |
246202.k1 |
246202k1 |
246202.k |
246202k |
$2$ |
$5$ |
\( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) |
\( - 2^{10} \cdot 11^{5} \cdot 19^{7} \cdot 31 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$64790$ |
$48$ |
$1$ |
$2.096121168$ |
$1$ |
|
$0$ |
$4608000$ |
$2.319450$ |
$-925177786737121/97135655936$ |
$0.87957$ |
$4.21256$ |
$[1, 0, 1, -732838, -262520840]$ |
\(y^2+xy+y=x^3-732838x-262520840\) |
5.12.0.a.1, 95.24.0.?, 3410.24.0.?, 12958.2.0.?, 64790.48.1.? |
$[(11005/3, 682375/3)]$ |
246202.k2 |
246202k2 |
246202.k |
246202k |
$2$ |
$5$ |
\( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) |
\( - 2^{2} \cdot 11 \cdot 19^{11} \cdot 31^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$64790$ |
$48$ |
$1$ |
$10.48060584$ |
$1$ |
|
$0$ |
$23040000$ |
$3.124168$ |
$552963123779039/3119098935125756$ |
$0.99268$ |
$4.89754$ |
$[1, 0, 1, 617302, 18429452680]$ |
\(y^2+xy+y=x^3+617302x+18429452680\) |
5.12.0.a.2, 95.24.0.?, 3410.24.0.?, 12958.2.0.?, 64790.48.1.? |
$[(-238901/15, 436330463/15)]$ |
246202.l1 |
246202l1 |
246202.l |
246202l |
$1$ |
$1$ |
\( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) |
\( - 2^{24} \cdot 11 \cdot 19^{3} \cdot 31 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$12958$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$760320$ |
$1.287289$ |
$-163667323/5721030656$ |
$0.98553$ |
$3.12194$ |
$[1, 0, 1, -217, 301372]$ |
\(y^2+xy+y=x^3-217x+301372\) |
12958.2.0.? |
$[]$ |
246202.m1 |
246202m1 |
246202.m |
246202m |
$1$ |
$1$ |
\( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) |
\( - 2^{7} \cdot 11^{5} \cdot 19^{8} \cdot 31 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2728$ |
$2$ |
$0$ |
$5.311638710$ |
$1$ |
|
$2$ |
$6048000$ |
$2.346169$ |
$-188260594363297/230697182848$ |
$0.88264$ |
$4.16247$ |
$[1, 1, 0, -431041, -192502539]$ |
\(y^2+xy=x^3+x^2-431041x-192502539\) |
2728.2.0.? |
$[(945, 15186)]$ |
246202.n1 |
246202n1 |
246202.n |
246202n |
$1$ |
$1$ |
\( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) |
\( - 2^{3} \cdot 11 \cdot 19^{8} \cdot 31^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$88$ |
$2$ |
$0$ |
$8.758421021$ |
$1$ |
|
$0$ |
$1280448$ |
$1.588442$ |
$2828663/84568$ |
$0.78567$ |
$3.41037$ |
$[1, 1, 0, 7574, -1802484]$ |
\(y^2+xy=x^3+x^2+7574x-1802484\) |
88.2.0.? |
$[(4131/5, 239514/5)]$ |
246202.o1 |
246202o1 |
246202.o |
246202o |
$1$ |
$1$ |
\( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) |
\( - 2^{23} \cdot 11 \cdot 19^{10} \cdot 31^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$88$ |
$2$ |
$0$ |
$173.9957830$ |
$1$ |
|
$0$ |
$49838976$ |
$3.547695$ |
$-400397989586837617/88675975168$ |
$0.95636$ |
$5.63690$ |
$[1, 1, 0, -281039951, -1813891603291]$ |
\(y^2+xy=x^3+x^2-281039951x-1813891603291\) |
88.2.0.? |
$[(2891209869324418210417084636449541287317828190869244278509344800000763700069/284789820795185474177991211828571333, 133214771467138454988559645791333666504764249989008245946684611439843413105850348011221177075256302855819435704743/284789820795185474177991211828571333)]$ |
246202.p1 |
246202p1 |
246202.p |
246202p |
$1$ |
$1$ |
\( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) |
\( - 2^{23} \cdot 11 \cdot 19^{8} \cdot 31^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2728$ |
$2$ |
$0$ |
$97.63528777$ |
$1$ |
|
$0$ |
$64915200$ |
$3.610760$ |
$1390484567954826128303/953670297418989568$ |
$0.97135$ |
$5.34486$ |
$[1, 1, 0, 83943684, -127344660784]$ |
\(y^2+xy=x^3+x^2+83943684x-127344660784\) |
2728.2.0.? |
$[(2434226364457172540231119587209926861877591/4591495777768802189, 3804094785339369489562716195134614196038281881875568515963659649/4591495777768802189)]$ |
246202.q1 |
246202q3 |
246202.q |
246202q |
$3$ |
$9$ |
\( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) |
\( - 2 \cdot 11^{9} \cdot 19^{6} \cdot 31 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$466488$ |
$144$ |
$3$ |
$1$ |
$4$ |
$2$ |
$0$ |
$4618944$ |
$2.341930$ |
$-888751018248625/146192756842$ |
$0.95164$ |
$4.21605$ |
$[1, 1, 0, -723090, 267899894]$ |
\(y^2+xy=x^3+x^2-723090x+267899894\) |
3.4.0.a.1, 9.12.0.a.1, 57.8.0-3.a.1.2, 171.24.0.?, 279.36.0.?, $\ldots$ |
$[]$ |
246202.q2 |
246202q1 |
246202.q |
246202q |
$3$ |
$9$ |
\( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) |
\( - 2^{9} \cdot 11 \cdot 19^{6} \cdot 31 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$466488$ |
$144$ |
$3$ |
$1$ |
$4$ |
$2$ |
$0$ |
$513216$ |
$1.243317$ |
$-3981876625/174592$ |
$0.85035$ |
$3.20968$ |
$[1, 1, 0, -11920, -524544]$ |
\(y^2+xy=x^3+x^2-11920x-524544\) |
3.4.0.a.1, 9.12.0.a.1, 57.8.0-3.a.1.1, 171.24.0.?, 279.36.0.?, $\ldots$ |
$[]$ |
246202.q3 |
246202q2 |
246202.q |
246202q |
$3$ |
$9$ |
\( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) |
\( - 2^{3} \cdot 11^{3} \cdot 19^{6} \cdot 31^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$466488$ |
$144$ |
$3$ |
$1$ |
$4$ |
$2$ |
$0$ |
$1539648$ |
$1.792624$ |
$514885403375/317214568$ |
$0.94093$ |
$3.59547$ |
$[1, 1, 0, 60280, -1422712]$ |
\(y^2+xy=x^3+x^2+60280x-1422712\) |
3.12.0.a.1, 57.24.0-3.a.1.1, 279.36.0.?, 2728.2.0.?, 5301.72.0.?, $\ldots$ |
$[]$ |
246202.r1 |
246202r1 |
246202.r |
246202r |
$1$ |
$1$ |
\( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) |
\( 2^{8} \cdot 11 \cdot 19^{8} \cdot 31^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$44$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2276352$ |
$1.890987$ |
$5638078297/2706176$ |
$0.81906$ |
$3.70619$ |
$[1, 1, 0, -95311, 4638117]$ |
\(y^2+xy=x^3+x^2-95311x+4638117\) |
44.2.0.a.1 |
$[]$ |
246202.s1 |
246202s1 |
246202.s |
246202s |
$1$ |
$1$ |
\( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) |
\( - 2^{6} \cdot 11 \cdot 19^{9} \cdot 31 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$12958$ |
$2$ |
$0$ |
$21.48083125$ |
$1$ |
|
$0$ |
$2590080$ |
$1.730021$ |
$-10503459/21824$ |
$0.76021$ |
$3.55981$ |
$[1, -1, 0, -31294, -4557484]$ |
\(y^2+xy=x^3-x^2-31294x-4557484\) |
12958.2.0.? |
$[(339994820884/36003, 100591723489015982/36003)]$ |
246202.t1 |
246202t1 |
246202.t |
246202t |
$1$ |
$1$ |
\( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) |
\( - 2^{18} \cdot 11 \cdot 19^{7} \cdot 31 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$12958$ |
$2$ |
$0$ |
$0.374499833$ |
$1$ |
|
$6$ |
$49766400$ |
$2.940163$ |
$-1116389511354314529513/1698430976$ |
$0.97010$ |
$5.32717$ |
$[1, -1, 1, -78019749, 265269225309]$ |
\(y^2+xy+y=x^3-x^2-78019749x+265269225309\) |
12958.2.0.? |
$[(5097, -2910)]$ |
246202.u1 |
246202u1 |
246202.u |
246202u |
$1$ |
$1$ |
\( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) |
\( - 2^{6} \cdot 11 \cdot 19^{3} \cdot 31 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$12958$ |
$2$ |
$0$ |
$0.482172811$ |
$1$ |
|
$4$ |
$136320$ |
$0.257801$ |
$-10503459/21824$ |
$0.76021$ |
$2.13668$ |
$[1, -1, 1, -87, 687]$ |
\(y^2+xy+y=x^3-x^2-87x+687\) |
12958.2.0.? |
$[(5, 16)]$ |
246202.v1 |
246202v1 |
246202.v |
246202v |
$1$ |
$1$ |
\( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) |
\( - 2^{3} \cdot 11 \cdot 19^{2} \cdot 31^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$88$ |
$2$ |
$0$ |
$1.176031847$ |
$1$ |
|
$8$ |
$67392$ |
$0.116223$ |
$2828663/84568$ |
$0.78567$ |
$1.98724$ |
$[1, 0, 0, 21, 265]$ |
\(y^2+xy=x^3+21x+265\) |
88.2.0.? |
$[(8, 27), (16, 61)]$ |
246202.w1 |
246202w1 |
246202.w |
246202w |
$1$ |
$1$ |
\( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) |
\( - 2^{23} \cdot 11 \cdot 19^{4} \cdot 31^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$88$ |
$2$ |
$0$ |
$0.764210116$ |
$1$ |
|
$16$ |
$2623104$ |
$2.075474$ |
$-400397989586837617/88675975168$ |
$0.95636$ |
$4.21377$ |
$[1, 0, 0, -778504, 264372288]$ |
\(y^2+xy=x^3-778504x+264372288\) |
88.2.0.? |
$[(512, -8), (16, 15864)]$ |
246202.x1 |
246202x1 |
246202.x |
246202x |
$1$ |
$1$ |
\( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) |
\( - 2 \cdot 11 \cdot 19^{8} \cdot 31 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2728$ |
$2$ |
$0$ |
$6.843967730$ |
$1$ |
|
$0$ |
$725760$ |
$1.195992$ |
$410172407/246202$ |
$0.78071$ |
$3.02070$ |
$[1, 0, 0, 5588, 31482]$ |
\(y^2+xy=x^3+5588x+31482\) |
2728.2.0.? |
$[(767/2, 22089/2)]$ |
246202.y1 |
246202y1 |
246202.y |
246202y |
$1$ |
$1$ |
\( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) |
\( 2^{8} \cdot 11 \cdot 19^{2} \cdot 31^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$44$ |
$2$ |
$0$ |
$0.574121675$ |
$1$ |
|
$4$ |
$119808$ |
$0.418767$ |
$5638078297/2706176$ |
$0.81906$ |
$2.28306$ |
$[1, 0, 0, -264, -704]$ |
\(y^2+xy=x^3-264x-704\) |
44.2.0.a.1 |
$[(-10, 36)]$ |
246202.z1 |
246202z2 |
246202.z |
246202z |
$2$ |
$3$ |
\( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) |
\( - 2^{6} \cdot 11^{3} \cdot 19^{9} \cdot 31 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$38874$ |
$16$ |
$0$ |
$0.655287733$ |
$1$ |
|
$6$ |
$4354560$ |
$2.120369$ |
$-300359170873/18112588736$ |
$0.89016$ |
$3.92711$ |
$[1, 1, 1, -50367, 44604517]$ |
\(y^2+xy+y=x^3+x^2-50367x+44604517\) |
3.4.0.a.1, 57.8.0-3.a.1.2, 2046.8.0.?, 12958.2.0.?, 38874.16.0.? |
$[(245, 6736)]$ |
246202.z2 |
246202z1 |
246202.z |
246202z |
$2$ |
$3$ |
\( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) |
\( - 2^{2} \cdot 11 \cdot 19^{7} \cdot 31^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$38874$ |
$16$ |
$0$ |
$1.965863199$ |
$1$ |
|
$2$ |
$1451520$ |
$1.571064$ |
$410172407/24905276$ |
$0.83236$ |
$3.39477$ |
$[1, 1, 1, 5588, -1636695]$ |
\(y^2+xy+y=x^3+x^2+5588x-1636695\) |
3.4.0.a.1, 57.8.0-3.a.1.1, 2046.8.0.?, 12958.2.0.?, 38874.16.0.? |
$[(321, 5615)]$ |
246202.ba1 |
246202ba1 |
246202.ba |
246202ba |
$1$ |
$1$ |
\( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) |
\( - 2^{17} \cdot 11^{4} \cdot 19^{7} \cdot 31^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$0.359238350$ |
$1$ |
|
$8$ |
$13708800$ |
$2.856239$ |
$-1425472804731557737/35039480250368$ |
$0.92118$ |
$4.79376$ |
$[1, 1, 1, -8464194, -9680945585]$ |
\(y^2+xy+y=x^3+x^2-8464194x-9680945585\) |
152.2.0.? |
$[(4805, 243799)]$ |
246202.bb1 |
246202bb1 |
246202.bb |
246202bb |
$1$ |
$1$ |
\( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) |
\( - 2^{24} \cdot 11 \cdot 19^{9} \cdot 31 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$12958$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$14446080$ |
$2.759510$ |
$-163667323/5721030656$ |
$0.98553$ |
$4.54507$ |
$[1, 1, 1, -78164, -2067268587]$ |
\(y^2+xy+y=x^3+x^2-78164x-2067268587\) |
12958.2.0.? |
$[]$ |
246202.bc1 |
246202bc2 |
246202.bc |
246202bc |
$2$ |
$2$ |
\( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) |
\( 2^{3} \cdot 11^{2} \cdot 19^{3} \cdot 31^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$51832$ |
$12$ |
$0$ |
$0.912969109$ |
$1$ |
|
$6$ |
$138240$ |
$0.599354$ |
$4973940243/930248$ |
$0.82344$ |
$2.51015$ |
$[1, -1, 1, -676, -5393]$ |
\(y^2+xy+y=x^3-x^2-676x-5393\) |
2.3.0.a.1, 152.6.0.?, 2728.6.0.?, 25916.6.0.?, 51832.12.0.? |
$[(-17, 39)]$ |
246202.bc2 |
246202bc1 |
246202.bc |
246202bc |
$2$ |
$2$ |
\( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) |
\( - 2^{6} \cdot 11 \cdot 19^{3} \cdot 31 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$51832$ |
$12$ |
$0$ |
$1.825938218$ |
$1$ |
|
$5$ |
$69120$ |
$0.252780$ |
$9663597/21824$ |
$0.86067$ |
$2.09304$ |
$[1, -1, 1, 84, -529]$ |
\(y^2+xy+y=x^3-x^2+84x-529\) |
2.3.0.a.1, 152.6.0.?, 2728.6.0.?, 12958.6.0.?, 51832.12.0.? |
$[(9, 25)]$ |
246202.bd1 |
246202bd1 |
246202.bd |
246202bd |
$1$ |
$1$ |
\( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) |
\( - 2^{5} \cdot 11 \cdot 19^{8} \cdot 31^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2728$ |
$2$ |
$0$ |
$6.906216553$ |
$1$ |
|
$2$ |
$2592000$ |
$2.112549$ |
$-247022988143625/3785601952$ |
$0.91334$ |
$4.09486$ |
$[1, -1, 1, -471895, -126294897]$ |
\(y^2+xy+y=x^3-x^2-471895x-126294897\) |
2728.2.0.? |
$[(1341, 39962)]$ |
246202.be1 |
246202be1 |
246202.be |
246202be |
$1$ |
$1$ |
\( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) |
\( - 2^{3} \cdot 11^{5} \cdot 19^{2} \cdot 31^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$88$ |
$2$ |
$0$ |
$0.815429685$ |
$1$ |
|
$4$ |
$181440$ |
$0.915858$ |
$-39380765625/1238160088$ |
$0.96891$ |
$2.76293$ |
$[1, -1, 1, -505, -32335]$ |
\(y^2+xy+y=x^3-x^2-505x-32335\) |
88.2.0.? |
$[(41, 100)]$ |
246202.bf1 |
246202bf1 |
246202.bf |
246202bf |
$1$ |
$1$ |
\( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) |
\( - 2^{3} \cdot 11 \cdot 19^{8} \cdot 31^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$88$ |
$2$ |
$0$ |
$12.72078873$ |
$1$ |
|
$0$ |
$2889216$ |
$2.164719$ |
$-14555156625/81269848$ |
$0.86841$ |
$3.97314$ |
$[1, -1, 1, -130750, -59348891]$ |
\(y^2+xy+y=x^3-x^2-130750x-59348891\) |
88.2.0.? |
$[(353131/25, 102593079/25)]$ |
246202.bg1 |
246202bg1 |
246202.bg |
246202bg |
$1$ |
$1$ |
\( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) |
\( - 2^{22} \cdot 11^{5} \cdot 19^{7} \cdot 31 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$12958$ |
$2$ |
$0$ |
$0.076948009$ |
$1$ |
|
$12$ |
$35481600$ |
$3.010365$ |
$-3489516076964589433/397867646713856$ |
$0.92729$ |
$4.87701$ |
$[1, 0, 0, -11407427, 16223908289]$ |
\(y^2+xy=x^3-11407427x+16223908289\) |
12958.2.0.? |
$[(-1642, 175545)]$ |
246202.bh1 |
246202bh1 |
246202.bh |
246202bh |
$1$ |
$1$ |
\( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) |
\( - 2^{10} \cdot 11 \cdot 19^{2} \cdot 31 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1364$ |
$2$ |
$0$ |
$0.966172113$ |
$1$ |
|
$2$ |
$95040$ |
$0.415911$ |
$-97187281273/349184$ |
$0.82503$ |
$2.51291$ |
$[1, 0, 0, -682, 6820]$ |
\(y^2+xy=x^3-682x+6820\) |
1364.2.0.? |
$[(12, 14)]$ |
246202.bi1 |
246202bi1 |
246202.bi |
246202bi |
$1$ |
$1$ |
\( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) |
\( - 2^{12} \cdot 11 \cdot 19^{9} \cdot 31 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$12958$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3502080$ |
$2.153240$ |
$-32370260203/1396736$ |
$0.82844$ |
$4.08996$ |
$[1, 0, 0, -455409, 122583401]$ |
\(y^2+xy=x^3-455409x+122583401\) |
12958.2.0.? |
$[]$ |
246202.bj1 |
246202bj1 |
246202.bj |
246202bj |
$1$ |
$1$ |
\( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) |
\( - 2^{6} \cdot 11 \cdot 19^{13} \cdot 31 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$12958$ |
$2$ |
$0$ |
$15.88825681$ |
$1$ |
|
$0$ |
$27578880$ |
$2.814476$ |
$-964128674947983273/19507856831936$ |
$0.93733$ |
$4.76168$ |
$[1, -1, 1, -7429809, -7928214623]$ |
\(y^2+xy+y=x^3-x^2-7429809x-7928214623\) |
12958.2.0.? |
$[(35335710109/2661, 5257286656024858/2661)]$ |
246202.bk1 |
246202bk1 |
246202.bk |
246202bk |
$1$ |
$1$ |
\( 2 \cdot 11 \cdot 19^{2} \cdot 31 \) |
\( - 2^{15} \cdot 11^{10} \cdot 19^{9} \cdot 31^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2982240000$ |
$4.899658$ |
$137623619399231089568709/784916686600277884928$ |
$1.07594$ |
$6.60226$ |
$[1, -1, 1, 7377635997, 725816732407459]$ |
\(y^2+xy+y=x^3-x^2+7377635997x+725816732407459\) |
152.2.0.? |
$[]$ |