Properties

Label 245c
Number of curves $3$
Conductor $245$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands for: SageMath
sage: E = EllipticCurve("c1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 245c

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
245.c2 245c1 \([0, -1, 1, -65, -204]\) \(-262144/35\) \(-4117715\) \([]\) \(32\) \(0.0018049\) \(\Gamma_0(N)\)-optimal
245.c3 245c2 \([0, -1, 1, 425, 433]\) \(71991296/42875\) \(-5044200875\) \([]\) \(96\) \(0.55111\)  
245.c1 245c3 \([0, -1, 1, -6435, 210006]\) \(-250523582464/13671875\) \(-1608482421875\) \([]\) \(288\) \(1.1004\)  

Rank

sage: E.rank()
 

The elliptic curves in class 245c have rank \(1\).

Complex multiplication

The elliptic curves in class 245c do not have complex multiplication.

Modular form 245.2.a.c

sage: E.q_eigenform(10)
 
\(q - q^{3} - 2q^{4} + q^{5} - 2q^{9} - 3q^{11} + 2q^{12} - 5q^{13} - q^{15} + 4q^{16} - 3q^{17} - 2q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.