Properties

Label 2450.l
Number of curves $4$
Conductor $2450$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("l1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 2450.l have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(5\)\(1\)
\(7\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(13\) \( 1 + 6 T + 13 T^{2}\) 1.13.g
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 2450.l do not have complex multiplication.

Modular form 2450.2.a.l

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - q^{8} - 3 q^{9} + 4 q^{11} - 6 q^{13} + q^{16} + 2 q^{17} + 3 q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 2450.l

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2450.l1 2450e4 \([1, -1, 0, -327917, 72354491]\) \(2121328796049/120050\) \(220683788281250\) \([2]\) \(18432\) \(1.8167\)  
2450.l2 2450e3 \([1, -1, 0, -107417, -12636009]\) \(74565301329/5468750\) \(10053015136718750\) \([2]\) \(18432\) \(1.8167\)  
2450.l3 2450e2 \([1, -1, 0, -21667, 998241]\) \(611960049/122500\) \(225187539062500\) \([2, 2]\) \(9216\) \(1.4701\)  
2450.l4 2450e1 \([1, -1, 0, 2833, 91741]\) \(1367631/2800\) \(-5147143750000\) \([2]\) \(4608\) \(1.1235\) \(\Gamma_0(N)\)-optimal