Properties

Label 244608.dm
Number of curves $1$
Conductor $244608$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dm1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 244608.dm1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(7\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 3 T + 5 T^{2}\) 1.5.d
\(11\) \( 1 - 5 T + 11 T^{2}\) 1.11.af
\(17\) \( 1 - 3 T + 17 T^{2}\) 1.17.ad
\(19\) \( 1 + 7 T + 19 T^{2}\) 1.19.h
\(23\) \( 1 + 5 T + 23 T^{2}\) 1.23.f
\(29\) \( 1 - 3 T + 29 T^{2}\) 1.29.ad
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 244608.dm do not have complex multiplication.

Modular form 244608.2.a.dm

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - 3 q^{5} + q^{9} + 5 q^{11} - q^{13} - 3 q^{15} + 3 q^{17} - 7 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 244608.dm

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
244608.dm1 244608dm1 \([0, 1, 0, -98208217, 32226835018391]\) \(-316880045595872672/1357028451635831559\) \(-448602053223471954739882500096\) \([]\) \(353310720\) \(4.3686\) \(\Gamma_0(N)\)-optimal