Show commands for:
SageMath
sage: E = EllipticCurve("bx1")
sage: E.isogeny_class()
Elliptic curves in class 24255.bx
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
24255.bx1 | 24255bo2 | [0, 0, 1, -11814537, -295504559933] | [] | 11520000 | |
24255.bx2 | 24255bo1 | [0, 0, 1, -3942687, 3528777397] | [] | 2304000 | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 24255.bx have rank \(0\).
Complex multiplication
The elliptic curves in class 24255.bx do not have complex multiplication.Modular form 24255.2.a.bx
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.