Properties

Label 24255.bx
Number of curves $2$
Conductor $24255$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("bx1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 24255.bx

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
24255.bx1 24255bo2 [0, 0, 1, -11814537, -295504559933] [] 11520000  
24255.bx2 24255bo1 [0, 0, 1, -3942687, 3528777397] [] 2304000 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 24255.bx have rank \(0\).

Complex multiplication

The elliptic curves in class 24255.bx do not have complex multiplication.

Modular form 24255.2.a.bx

sage: E.q_eigenform(10)
 
\( q + 2q^{2} + 2q^{4} + q^{5} + 2q^{10} - q^{11} + 6q^{13} - 4q^{16} - 7q^{17} + 5q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.