Properties

Label 2420f
Number of curves 2
Conductor 2420
CM no
Rank 0
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("2420.g1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 2420f

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
2420.g2 2420f1 [0, -1, 0, -645, -130] [2] 1440 \(\Gamma_0(N)\)-optimal
2420.g1 2420f2 [0, -1, 0, -7300, -237048] [2] 2880  

Rank

sage: E.rank()
 

The elliptic curves in class 2420f have rank \(0\).

Modular form 2420.2.a.g

sage: E.q_eigenform(10)
 
\( q + 2q^{3} + q^{5} + q^{9} + 2q^{15} + 4q^{17} + 4q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.