Properties

Label 2420e
Number of curves 4
Conductor 2420
CM no
Rank 1
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath

sage: E = EllipticCurve("2420.a1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 2420e

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
2420.a3 2420e1 [0, 1, 0, -161, -596] [2] 720 \(\Gamma_0(N)\)-optimal
2420.a4 2420e2 [0, 1, 0, 444, -3500] [2] 1440  
2420.a1 2420e3 [0, 1, 0, -5001, 134440] [2] 2160  
2420.a2 2420e4 [0, 1, 0, -4396, 168804] [2] 4320  

Rank

sage: E.rank()
 

The elliptic curves in class 2420e have rank \(1\).

Modular form 2420.2.a.a

sage: E.q_eigenform(10)
 
\( q - 2q^{3} - q^{5} - 2q^{7} + q^{9} - 2q^{13} + 2q^{15} + 6q^{17} + 4q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.