Show commands: SageMath
Rank
The elliptic curves in class 2420e have rank \(1\).
L-function data
| Bad L-factors: |
| |||||||||||||||||||||||||||
| Good L-factors: |
| |||||||||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 2420e do not have complex multiplication.Modular form 2420.2.a.e
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 2420e
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 2420.a3 | 2420e1 | \([0, 1, 0, -161, -596]\) | \(16384/5\) | \(141724880\) | \([2]\) | \(720\) | \(0.26900\) | \(\Gamma_0(N)\)-optimal |
| 2420.a4 | 2420e2 | \([0, 1, 0, 444, -3500]\) | \(21296/25\) | \(-11337990400\) | \([2]\) | \(1440\) | \(0.61557\) | |
| 2420.a1 | 2420e3 | \([0, 1, 0, -5001, 134440]\) | \(488095744/125\) | \(3543122000\) | \([2]\) | \(2160\) | \(0.81830\) | |
| 2420.a2 | 2420e4 | \([0, 1, 0, -4396, 168804]\) | \(-20720464/15625\) | \(-7086244000000\) | \([2]\) | \(4320\) | \(1.1649\) |