Properties

Label 2420e
Number of curves $4$
Conductor $2420$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("e1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 2420e have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 + T\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - T + 3 T^{2}\) 1.3.ab
\(7\) \( 1 + T + 7 T^{2}\) 1.7.b
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 2420e do not have complex multiplication.

Modular form 2420.2.a.e

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{3} - q^{5} - 2 q^{7} + q^{9} - 2 q^{13} + 2 q^{15} + 6 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 2420e

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2420.a3 2420e1 \([0, 1, 0, -161, -596]\) \(16384/5\) \(141724880\) \([2]\) \(720\) \(0.26900\) \(\Gamma_0(N)\)-optimal
2420.a4 2420e2 \([0, 1, 0, 444, -3500]\) \(21296/25\) \(-11337990400\) \([2]\) \(1440\) \(0.61557\)  
2420.a1 2420e3 \([0, 1, 0, -5001, 134440]\) \(488095744/125\) \(3543122000\) \([2]\) \(2160\) \(0.81830\)  
2420.a2 2420e4 \([0, 1, 0, -4396, 168804]\) \(-20720464/15625\) \(-7086244000000\) \([2]\) \(4320\) \(1.1649\)