Properties

Label 24200h
Number of curves 4
Conductor 24200
CM no
Rank 2
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("24200.n1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 24200h

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
24200.n3 24200h1 [0, 0, 0, -6050, -166375] [2] 30720 \(\Gamma_0(N)\)-optimal
24200.n2 24200h2 [0, 0, 0, -21175, 998250] [2, 2] 61440  
24200.n4 24200h3 [0, 0, 0, 39325, 5656750] [2] 122880  
24200.n1 24200h4 [0, 0, 0, -323675, 70875750] [2] 122880  

Rank

sage: E.rank()
 

The elliptic curves in class 24200h have rank \(2\).

Modular form 24200.2.a.n

sage: E.q_eigenform(10)
 
\( q - 4q^{7} - 3q^{9} - 2q^{13} + 2q^{17} - 4q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.