Properties

Label 2420.c
Number of curves 2
Conductor 2420
CM no
Rank 0
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("2420.c1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 2420.c

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
2420.c1 2420b2 [0, 0, 0, -1463, -21538] [2] 1152  
2420.c2 2420b1 [0, 0, 0, -88, -363] [2] 576 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 2420.c have rank \(0\).

Modular form 2420.2.a.c

sage: E.q_eigenform(10)
 
\( q - q^{5} - 4q^{7} - 3q^{9} - 4q^{13} + 4q^{17} - 8q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.