# Properties

 Label 24150bl2 Conductor $24150$ Discriminant $9.901\times 10^{19}$ j-invariant $$\frac{986396822567235411402169}{6336721794060000}$$ CM no Rank $0$ Torsion structure $$\Z/{2}\Z$$

# Related objects

Show commands for: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([1, 1, 1, -51846088, 143666130281])

gp: E = ellinit([1, 1, 1, -51846088, 143666130281])

magma: E := EllipticCurve([1, 1, 1, -51846088, 143666130281]);

$$y^2+xy+y=x^3+x^2-51846088x+143666130281$$

## Mordell-Weil group structure

$$\Z/{2}\Z$$

## Torsion generators

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

$$\left(\frac{16595}{4}, -\frac{16599}{8}\right)$$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);



## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$24150$$ = $$2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 23$$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $$99011278032187500000$$ = $$2^{5} \cdot 3^{12} \cdot 5^{10} \cdot 7^{2} \cdot 23^{3}$$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$\frac{986396822567235411402169}{6336721794060000}$$ = $$2^{-5} \cdot 3^{-12} \cdot 5^{-4} \cdot 7^{-2} \cdot 11^{3} \cdot 23^{-3} \cdot 101^{3} \cdot 89599^{3}$$ Endomorphism ring: $$\Z$$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $$3.0212022995149217213145845931\dots$$ Stable Faltings height: $$2.2164833432978715340142049265\dots$$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $$0$$ sage: E.regulator()  magma: Regulator(E); Regulator: $$1$$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $$0.16891036199749600590571914087\dots$$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $$80$$  = $$5\cdot2\cdot2^{2}\cdot2\cdot1$$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $$2$$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $$1$$ (exact)

## Modular invariants

Modular form 24150.2.a.bo

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q + q^{2} - q^{3} + q^{4} - q^{6} - q^{7} + q^{8} + q^{9} - q^{12} + 4q^{13} - q^{14} + q^{16} + q^{18} + 2q^{19} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 2211840 $$\Gamma_0(N)$$-optimal: no Manin constant: 1

#### Special L-value

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar[2]/factorial(ar[1])

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

$$L(E,1)$$ ≈ $$3.3782072399499201181143828173092263800$$

## Local data

This elliptic curve is not semistable. There are 5 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$5$$ $$I_{5}$$ Split multiplicative -1 1 5 5
$$3$$ $$2$$ $$I_{12}$$ Non-split multiplicative 1 1 12 12
$$5$$ $$4$$ $$I_4^{*}$$ Additive 1 2 10 4
$$7$$ $$2$$ $$I_{2}$$ Non-split multiplicative 1 1 2 2
$$23$$ $$1$$ $$I_{3}$$ Non-split multiplicative 1 1 3 3

## Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X6.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^1\Z_2)$ generated by $\left(\begin{array}{rr} 1 & 1 \\ 0 & 1 \end{array}\right)$ and has index 3.

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ except those listed.

prime Image of Galois representation
$$2$$ B
$$3$$ B

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]

All $$p$$-adic regulators are identically $$1$$ since the rank is $$0$$.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 23 split nonsplit add nonsplit nonsplit 5 0 - 0 0 0 0 - 0 0

All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 7$ of good reduction are zero.

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2, 3 and 6.
Its isogeny class 24150bl consists of 4 curves linked by isogenies of degrees dividing 6.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $2$ $$\Q(\sqrt{46})$$ $$\Z/2\Z \times \Z/2\Z$$ Not in database $2$ $$\Q(\sqrt{5})$$ $$\Z/6\Z$$ Not in database $4$ 4.0.901600.2 $$\Z/4\Z$$ Not in database $4$ $$\Q(\sqrt{5}, \sqrt{46})$$ $$\Z/2\Z \times \Z/6\Z$$ Not in database $6$ 6.0.3241350000.1 $$\Z/6\Z$$ Not in database $8$ 8.0.27520951951360000.79 $$\Z/2\Z \times \Z/4\Z$$ Not in database $8$ Deg 8 $$\Z/2\Z \times \Z/4\Z$$ Not in database $8$ 8.0.812882560000.5 $$\Z/12\Z$$ Not in database $12$ Deg 12 $$\Z/3\Z \times \Z/6\Z$$ Not in database $12$ Deg 12 $$\Z/2\Z \times \Z/6\Z$$ Not in database $16$ Deg 16 $$\Z/8\Z$$ Not in database $16$ Deg 16 $$\Z/2\Z \times \Z/12\Z$$ Not in database $16$ Deg 16 $$\Z/2\Z \times \Z/12\Z$$ Not in database $18$ 18.6.8128417750986884926382679034630494227812500000000.1 $$\Z/18\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.