Properties

Label 2415.c
Number of curves 4
Conductor 2415
CM no
Rank 1
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("2415.c1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 2415.c

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
2415.c1 2415h3 [1, 0, 0, -4430, -113505] [2] 2048  
2415.c2 2415h2 [1, 0, 0, -405, 0] [2, 2] 1024  
2415.c3 2415h1 [1, 0, 0, -280, 1775] [4] 512 \(\Gamma_0(N)\)-optimal
2415.c4 2415h4 [1, 0, 0, 1620, 405] [2] 2048  

Rank

sage: E.rank()
 

The elliptic curves in class 2415.c have rank \(1\).

Modular form 2415.2.a.c

sage: E.q_eigenform(10)
 
\( q - q^{2} + q^{3} - q^{4} + q^{5} - q^{6} - q^{7} + 3q^{8} + q^{9} - q^{10} - q^{12} + 2q^{13} + q^{14} + q^{15} - q^{16} - 6q^{17} - q^{18} - 4q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.