Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
237910.a1 |
237910a1 |
237910.a |
237910a |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 37 \cdot 643 \) |
\( 2^{23} \cdot 5 \cdot 37 \cdot 643^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$951640$ |
$2$ |
$0$ |
$8.053183834$ |
$1$ |
|
$0$ |
$2945472$ |
$2.103931$ |
$2711834138414554966441/412567057318543360$ |
$0.90633$ |
$3.98654$ |
$[1, 1, 0, -290522, -51867884]$ |
\(y^2+xy=x^3+x^2-290522x-51867884\) |
951640.2.0.? |
$[(183095/13, 64957543/13)]$ |
237910.b1 |
237910b1 |
237910.b |
237910b |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 37 \cdot 643 \) |
\( 2^{5} \cdot 5 \cdot 37^{3} \cdot 643 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$951640$ |
$2$ |
$0$ |
$9.363827608$ |
$1$ |
|
$4$ |
$207360$ |
$0.889170$ |
$43350454238750569/5211180640$ |
$0.84376$ |
$3.09444$ |
$[1, 0, 1, -7319, 240346]$ |
\(y^2+xy+y=x^3-7319x+240346\) |
951640.2.0.? |
$[(46, 16), (199/2, -219/2)]$ |
237910.c1 |
237910c1 |
237910.c |
237910c |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 37 \cdot 643 \) |
\( - 2^{2} \cdot 5 \cdot 37 \cdot 643 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$237910$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$64272$ |
$-0.222088$ |
$679151439/475820$ |
$0.68239$ |
$1.64272$ |
$[1, -1, 1, 18, 9]$ |
\(y^2+xy+y=x^3-x^2+18x+9\) |
237910.2.0.? |
$[]$ |
237910.d1 |
237910d2 |
237910.d |
237910d |
$2$ |
$7$ |
\( 2 \cdot 5 \cdot 37 \cdot 643 \) |
\( 2^{5} \cdot 5 \cdot 37 \cdot 643^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$7$ |
7.48.0.5 |
7B.1.3 |
$6661480$ |
$96$ |
$2$ |
$1$ |
$196$ |
$2, 7$ |
$0$ |
$3779805120$ |
$5.268379$ |
$1088309881108300742016838020617212688383521/269028640626960381689440$ |
$1.04181$ |
$7.81874$ |
$[1, -1, 1, -2142938068797, -1207431080854081371]$ |
\(y^2+xy+y=x^3-x^2-2142938068797x-1207431080854081371\) |
7.48.0-7.a.2.2, 951640.2.0.?, 6661480.96.2.? |
$[]$ |
237910.d2 |
237910d1 |
237910.d |
237910d |
$2$ |
$7$ |
\( 2 \cdot 5 \cdot 37 \cdot 643 \) |
\( 2^{35} \cdot 5^{7} \cdot 37^{7} \cdot 643 \) |
$0$ |
$\Z/7\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$7$ |
7.48.0.1 |
7B.1.1 |
$6661480$ |
$96$ |
$2$ |
$1$ |
$4$ |
$2$ |
$6$ |
$539972160$ |
$4.295425$ |
$285951687415542722080196235890721/163856215505464081776640000000$ |
$1.03458$ |
$6.03679$ |
$[1, -1, 1, -1372533597, 1939871690469]$ |
\(y^2+xy+y=x^3-x^2-1372533597x+1939871690469\) |
7.48.0-7.a.1.2, 951640.2.0.?, 6661480.96.2.? |
$[]$ |
237910.e1 |
237910e1 |
237910.e |
237910e |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 37 \cdot 643 \) |
\( 2^{5} \cdot 5 \cdot 37 \cdot 643 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$951640$ |
$2$ |
$0$ |
$2.801327723$ |
$1$ |
|
$6$ |
$48000$ |
$0.137967$ |
$1454034564289/3806560$ |
$0.81373$ |
$2.26221$ |
$[1, 1, 1, -236, -1491]$ |
\(y^2+xy+y=x^3+x^2-236x-1491\) |
951640.2.0.? |
$[(-9, 5), (31, 133)]$ |
237910.f1 |
237910f1 |
237910.f |
237910f |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 37 \cdot 643 \) |
\( 2^{11} \cdot 5^{5} \cdot 37 \cdot 643 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$951640$ |
$2$ |
$0$ |
$0.320455888$ |
$1$ |
|
$20$ |
$369600$ |
$0.835716$ |
$269098170990481/152262400000$ |
$0.84622$ |
$2.68393$ |
$[1, 1, 1, -1345, -3393]$ |
\(y^2+xy+y=x^3+x^2-1345x-3393\) |
951640.2.0.? |
$[(47, 176), (-33, 96)]$ |
237910.g1 |
237910g1 |
237910.g |
237910g |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 37 \cdot 643 \) |
\( 2^{21} \cdot 5 \cdot 37^{3} \cdot 643 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$951640$ |
$2$ |
$0$ |
$0.178719857$ |
$1$ |
|
$8$ |
$1382976$ |
$1.632164$ |
$62654074774512184081/341519934423040$ |
$0.88581$ |
$3.68219$ |
$[1, 1, 1, -82745, 9083655]$ |
\(y^2+xy+y=x^3+x^2-82745x+9083655\) |
951640.2.0.? |
$[(495, 9224)]$ |
237910.h1 |
237910h2 |
237910.h |
237910h |
$2$ |
$2$ |
\( 2 \cdot 5 \cdot 37 \cdot 643 \) |
\( 2 \cdot 5^{2} \cdot 37 \cdot 643^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.3.0.1 |
2B |
$951640$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$130752$ |
$0.421198$ |
$3891377265489/764880650$ |
$0.82648$ |
$2.34173$ |
$[1, -1, 1, -328, 1937]$ |
\(y^2+xy+y=x^3-x^2-328x+1937\) |
2.3.0.a.1, 296.6.0.?, 12860.6.0.?, 951640.12.0.? |
$[]$ |
237910.h2 |
237910h1 |
237910.h |
237910h |
$2$ |
$2$ |
\( 2 \cdot 5 \cdot 37 \cdot 643 \) |
\( - 2^{2} \cdot 5 \cdot 37^{2} \cdot 643 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.3.0.1 |
2B |
$951640$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$65376$ |
$0.074625$ |
$8377795791/17605340$ |
$0.78916$ |
$1.92383$ |
$[1, -1, 1, 42, 161]$ |
\(y^2+xy+y=x^3-x^2+42x+161\) |
2.3.0.a.1, 296.6.0.?, 6430.6.0.?, 951640.12.0.? |
$[]$ |
237910.i1 |
237910i1 |
237910.i |
237910i |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 37 \cdot 643 \) |
\( 2 \cdot 5^{3} \cdot 37^{5} \cdot 643 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$951640$ |
$2$ |
$0$ |
$1.842689305$ |
$1$ |
|
$0$ |
$765120$ |
$1.212271$ |
$42406683040809361/11147041087750$ |
$0.84928$ |
$3.09266$ |
$[1, 0, 0, -7265, 175475]$ |
\(y^2+xy=x^3-7265x+175475\) |
951640.2.0.? |
$[(275/2, 95/2)]$ |