Properties

Label 2368.n
Number of curves $1$
Conductor $2368$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("n1")
 
E.isogeny_class()
 

Elliptic curves in class 2368.n

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2368.n1 2368f1 \([0, 1, 0, -37, 67]\) \(351232/37\) \(606208\) \([]\) \(256\) \(-0.15567\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 2368.n1 has rank \(0\).

Complex multiplication

The elliptic curves in class 2368.n do not have complex multiplication.

Modular form 2368.2.a.n

sage: E.q_eigenform(10)
 
\(q + q^{3} + 2 q^{5} + q^{7} - 2 q^{9} - q^{11} + 6 q^{13} + 2 q^{15} - 4 q^{17} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display