# Properties

 Label 2366.n Number of curves 2 Conductor 2366 CM no Rank 0 Graph # Related objects

Show commands for: SageMath
sage: E = EllipticCurve("2366.n1")

sage: E.isogeny_class()

## Elliptic curves in class 2366.n

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
2366.n1 2366i2 [1, 0, 0, -62, -196] [] 432
2366.n2 2366i1 [1, 0, 0, 3, -1] [] 144 $$\Gamma_0(N)$$-optimal

## Rank

sage: E.rank()

The elliptic curves in class 2366.n have rank $$0$$.

## Modular form2366.2.a.n

sage: E.q_eigenform(10)

$$q + q^{2} + q^{3} + q^{4} - 3q^{5} + q^{6} - q^{7} + q^{8} - 2q^{9} - 3q^{10} + q^{12} - q^{14} - 3q^{15} + q^{16} + 6q^{17} - 2q^{18} + 4q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels. 