Show commands for:
SageMath
sage: E = EllipticCurve("j1")
sage: E.isogeny_class()
Elliptic curves in class 23520j
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
23520.o3 | 23520j1 | [0, -1, 0, -211990, 30643600] | [2, 2] | 221184 | \(\Gamma_0(N)\)-optimal |
23520.o4 | 23520j2 | [0, -1, 0, 436280, 180782932] | [2] | 442368 | |
23520.o2 | 23520j3 | [0, -1, 0, -1038865, -379651775] | [2] | 442368 | |
23520.o1 | 23520j4 | [0, -1, 0, -3213240, 2217954600] | [2] | 442368 |
Rank
sage: E.rank()
The elliptic curves in class 23520j have rank \(1\).
Complex multiplication
The elliptic curves in class 23520j do not have complex multiplication.Modular form 23520.2.a.j
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 2 & 2 \\ 2 & 1 & 4 & 4 \\ 2 & 4 & 1 & 4 \\ 2 & 4 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.