Show commands for:
SageMath
sage: E = EllipticCurve("d1")
sage: E.isogeny_class()
Elliptic curves in class 23520d
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
23520.d3 | 23520d1 | [0, -1, 0, -2466, -21384] | [2, 2] | 24576 | \(\Gamma_0(N)\)-optimal |
23520.d4 | 23520d2 | [0, -1, 0, 8559, -169119] | [2] | 49152 | |
23520.d2 | 23520d3 | [0, -1, 0, -19616, 1048776] | [2] | 49152 | |
23520.d1 | 23520d4 | [0, -1, 0, -33336, -2330460] | [2] | 49152 |
Rank
sage: E.rank()
The elliptic curves in class 23520d have rank \(0\).
Complex multiplication
The elliptic curves in class 23520d do not have complex multiplication.Modular form 23520.2.a.d
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 2 & 2 \\ 2 & 1 & 4 & 4 \\ 2 & 4 & 1 & 4 \\ 2 & 4 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.