Show commands for:
SageMath
sage: E = EllipticCurve("bl1")
sage: E.isogeny_class()
Elliptic curves in class 23520bl
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
23520.p3 | 23520bl1 | [0, -1, 0, -993050, 380190000] | [2, 2] | 368640 | \(\Gamma_0(N)\)-optimal |
23520.p4 | 23520bl2 | [0, -1, 0, -576305, 701333697] | [4] | 737280 | |
23520.p2 | 23520bl3 | [0, -1, 0, -1421800, 20383000] | [2] | 737280 | |
23520.p1 | 23520bl4 | [0, -1, 0, -15876800, 24354934500] | [2] | 737280 |
Rank
sage: E.rank()
The elliptic curves in class 23520bl have rank \(0\).
Complex multiplication
The elliptic curves in class 23520bl do not have complex multiplication.Modular form 23520.2.a.bl
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 2 & 2 \\ 2 & 1 & 4 & 4 \\ 2 & 4 & 1 & 4 \\ 2 & 4 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.