Show commands for:
SageMath
sage: E = EllipticCurve("bc1")
sage: E.isogeny_class()
Elliptic curves in class 23520bc
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
23520.h3 | 23520bc1 | [0, -1, 0, -43626, 3411360] | [2, 2] | 73728 | \(\Gamma_0(N)\)-optimal |
23520.h4 | 23520bc2 | [0, -1, 0, 16399, 12018945] | [2] | 147456 | |
23520.h2 | 23520bc3 | [0, -1, 0, -109776, -9315900] | [2] | 147456 | |
23520.h1 | 23520bc4 | [0, -1, 0, -691896, 221748696] | [2] | 147456 |
Rank
sage: E.rank()
The elliptic curves in class 23520bc have rank \(1\).
Complex multiplication
The elliptic curves in class 23520bc do not have complex multiplication.Modular form 23520.2.a.bc
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 2 & 2 \\ 2 & 1 & 4 & 4 \\ 2 & 4 & 1 & 4 \\ 2 & 4 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.