Properties

Label 235200zm
Number of curves $2$
Conductor $235200$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("235200.zm1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 235200zm

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
235200.zm1 235200zm1 [0, 1, 0, -24033, 540063] [2] 884736 \(\Gamma_0(N)\)-optimal
235200.zm2 235200zm2 [0, 1, 0, 87967, 4236063] [2] 1769472  

Rank

sage: E.rank()
 

The elliptic curves in class 235200zm have rank \(0\).

Modular form 235200.2.a.zm

sage: E.q_eigenform(10)
 
\( q + q^{3} + q^{9} + 2q^{11} + 2q^{13} + 4q^{17} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.