Properties

Label 235200p
Number of curves 2
Conductor 235200
CM no
Rank 0
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("235200.p1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 235200p

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
235200.p2 235200p1 [0, -1, 0, -139200833, -627478070463] [] 58060800 \(\Gamma_0(N)\)-optimal
235200.p1 235200p2 [0, -1, 0, -11252400833, -459422604230463] [] 174182400  

Rank

sage: E.rank()
 

The elliptic curves in class 235200p have rank \(0\).

Modular form 235200.2.a.p

sage: E.q_eigenform(10)
 
\( q - q^{3} + q^{9} - 6q^{11} + 4q^{13} - 3q^{17} + 4q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.