Properties

Label 235200.q
Number of curves $2$
Conductor $235200$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("235200.q1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 235200.q

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
235200.q1 235200q2 [0, -1, 0, -423033, 2630937] [2] 5505024  
235200.q2 235200q1 [0, -1, 0, -294408, 61412562] [2] 2752512 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 235200.q have rank \(0\).

Modular form 235200.2.a.q

sage: E.q_eigenform(10)
 
\( q - q^{3} + q^{9} - 6q^{11} + 4q^{13} + 2q^{17} + 4q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.