Properties

Label 235200.ms
Number of curves $6$
Conductor $235200$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("235200.ms1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 235200.ms

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
235200.ms1 235200ms6 [0, -1, 0, -1317121633, -18398252484863] [2] 56623104  
235200.ms2 235200ms4 [0, -1, 0, -82321633, -287440884863] [2, 2] 28311552  
235200.ms3 235200ms5 [0, -1, 0, -76833633, -327420964863] [2] 56623104  
235200.ms4 235200ms3 [0, -1, 0, -29009633, 56851147137] [2] 28311552  
235200.ms5 235200ms2 [0, -1, 0, -5489633, -3853972863] [2, 2] 14155776  
235200.ms6 235200ms1 [0, -1, 0, 782367, -373012863] [2] 7077888 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 235200.ms have rank \(1\).

Modular form 235200.2.a.ms

sage: E.q_eigenform(10)
 
\( q - q^{3} + q^{9} + 4q^{11} + 2q^{13} + 2q^{17} + 4q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrrrr} 1 & 2 & 4 & 8 & 4 & 8 \\ 2 & 1 & 2 & 4 & 2 & 4 \\ 4 & 2 & 1 & 8 & 4 & 8 \\ 8 & 4 & 8 & 1 & 2 & 4 \\ 4 & 2 & 4 & 2 & 1 & 2 \\ 8 & 4 & 8 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.