Properties

Label 235200.d
Number of curves 2
Conductor 235200
CM no
Rank 0
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("235200.d1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 235200.d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
235200.d1 235200d2 [0, -1, 0, -237813, 44717037] [] 1306368  
235200.d2 235200d1 [0, -1, 0, -2613, 76077] [] 435456 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 235200.d have rank \(0\).

Modular form 235200.2.a.d

sage: E.q_eigenform(10)
 
\( q - q^{3} + q^{9} - 6q^{11} - 5q^{13} - 6q^{17} + 5q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.