Show commands for:
SageMath
sage: E = EllipticCurve("bbi1")
sage: E.isogeny_class()
Elliptic curves in class 235200.bbi
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
235200.bbi1 | 235200bbi4 | [0, 1, 0, -29284033, -61004739937] | [2] | 14155776 | |
235200.bbi2 | 235200bbi2 | [0, 1, 0, -1844033, -938579937] | [2, 2] | 7077888 | |
235200.bbi3 | 235200bbi1 | [0, 1, 0, -276033, 35148063] | [2] | 3538944 | \(\Gamma_0(N)\)-optimal |
235200.bbi4 | 235200bbi3 | [0, 1, 0, 507967, -3165923937] | [2] | 14155776 |
Rank
sage: E.rank()
The elliptic curves in class 235200.bbi have rank \(1\).
Complex multiplication
The elliptic curves in class 235200.bbi do not have complex multiplication.Modular form 235200.2.a.bbi
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.