Properties

Label 23520.o
Number of curves $4$
Conductor $23520$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("o1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 23520.o

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
23520.o1 23520j4 [0, -1, 0, -3213240, 2217954600] [2] 442368  
23520.o2 23520j3 [0, -1, 0, -1038865, -379651775] [2] 442368  
23520.o3 23520j1 [0, -1, 0, -211990, 30643600] [2, 2] 221184 \(\Gamma_0(N)\)-optimal
23520.o4 23520j2 [0, -1, 0, 436280, 180782932] [2] 442368  

Rank

sage: E.rank()
 

The elliptic curves in class 23520.o have rank \(1\).

Complex multiplication

The elliptic curves in class 23520.o do not have complex multiplication.

Modular form 23520.2.a.o

sage: E.q_eigenform(10)
 
\( q - q^{3} + q^{5} + q^{9} - 4q^{11} - 2q^{13} - q^{15} + 2q^{17} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.