Show commands for:
SageMath
sage: E = EllipticCurve("g1")
sage: E.isogeny_class()
Elliptic curves in class 23520.g
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
23520.g1 | 23520bd4 | [0, -1, 0, -7856, -265404] | [2] | 24576 | |
23520.g2 | 23520bd3 | [0, -1, 0, -1976, 30360] | [2] | 24576 | |
23520.g3 | 23520bd1 | [0, -1, 0, -506, -3744] | [2, 2] | 12288 | \(\Gamma_0(N)\)-optimal |
23520.g4 | 23520bd2 | [0, -1, 0, 719, -20159] | [2] | 24576 |
Rank
sage: E.rank()
The elliptic curves in class 23520.g have rank \(1\).
Complex multiplication
The elliptic curves in class 23520.g do not have complex multiplication.Modular form 23520.2.a.g
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.