Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3-x^2-4136x+103403\) | (homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3-x^2z-4136xz^2+103403z^3\) | (dehomogenize, simplify) |
\(y^2=x^3-66171x+6551638\) | (homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{3}\Z\)
Torsion generators
\( \left(37, -15\right) \)
Integral points
\( \left(37, -15\right) \), \( \left(37, -23\right) \)
Invariants
Conductor: | \( 234 \) | = | $2 \cdot 3^{2} \cdot 13$ | comment: Conductor
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
|
Discriminant: | $-4852224 $ | = | $-1 \cdot 2^{9} \cdot 3^{6} \cdot 13 $ | comment: Discriminant
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
|
j-invariant: | \( -\frac{10730978619193}{6656} \) | = | $-1 \cdot 2^{-9} \cdot 7^{3} \cdot 13^{-1} \cdot 23^{3} \cdot 137^{3}$ | comment: j-invariant
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
|
Endomorphism ring: | $\Z$ | |||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | sage: E.has_cm()
magma: HasComplexMultiplication(E);
| |
Sato-Tate group: | $\mathrm{SU}(2)$ | |||
Faltings height: | $0.60369257046743150147083312915\dots$ | gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
|
||
Stable Faltings height: | $0.054386426133376655773210510689\dots$ | magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
|
||
$abc$ quality: | $1.0219339430875438\dots$ | |||
Szpiro ratio: | $6.708281676257673\dots$ |
BSD invariants
Analytic rank: | $0$ | sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
|
Regulator: | $1$ | comment: Regulator
sage: E.regulator()
G = E.gen \\ if available
magma: Regulator(E);
|
Real period: | $2.0087998967623543904085700123\dots$ | comment: Real Period
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
Tamagawa product: | $ 9 $ = $ 3^{2}\cdot1\cdot1 $ | comment: Tamagawa numbers
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
|
Torsion order: | $3$ | comment: Torsion order
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
|
Analytic order of Ш: | $1$ ( exact) | comment: Order of Sha
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
Special value: | $ L(E,1) $ ≈ $ 2.0087998967623543904085700123 $ | comment: Special L-value
r = E.rank();
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
BSD formula
$\displaystyle 2.008799897 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 2.008800 \cdot 1.000000 \cdot 9}{3^2} \approx 2.008799897$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 180 | comment: Modular degree
sage: E.modular_degree()
gp: ellmoddegree(E)
magma: ModularDegree(E);
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 | comment: Manin constant
magma: ManinConstant(E);
|
Local data
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $v_p(N)$ | $v_p(\Delta)$ | $v_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $9$ | $I_{9}$ | split multiplicative | -1 | 1 | 9 | 9 |
$3$ | $1$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
$13$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$3$ | 3B.1.1 | 9.24.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \), index $144$, genus $3$, and generators
$\left(\begin{array}{rr} 1 & 18 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 18 \\ 10 & 181 \end{array}\right),\left(\begin{array}{rr} 10 & 9 \\ 81 & 73 \end{array}\right),\left(\begin{array}{rr} 478 & 9 \\ 225 & 928 \end{array}\right),\left(\begin{array}{rr} 448 & 9 \\ 855 & 76 \end{array}\right),\left(\begin{array}{rr} 10 & 9 \\ 459 & 928 \end{array}\right),\left(\begin{array}{rr} 919 & 18 \\ 918 & 19 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 18 & 1 \end{array}\right),\left(\begin{array}{rr} 701 & 450 \\ 0 & 493 \end{array}\right)$.
The torsion field $K:=\Q(E[936])$ is a degree-$1086898176$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/936\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 117 = 3^{2} \cdot 13 \) |
$3$ | additive | $6$ | \( 13 \) |
$13$ | split multiplicative | $14$ | \( 18 = 2 \cdot 3^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3 and 9.
Its isogeny class 234.e
consists of 3 curves linked by isogenies of
degrees dividing 9.
Twists
The minimal quadratic twist of this elliptic curve is 26.a1, its twist by $-3$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{3}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | 3.1.104.1 | \(\Z/6\Z\) | not in database |
$3$ | 3.3.13689.1 | \(\Z/9\Z\) | not in database |
$6$ | 6.0.1124864.1 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$6$ | 6.0.62462907.1 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
$6$ | 6.0.3326427.2 | \(\Z/9\Z\) | not in database |
$9$ | 9.3.17073732926974464.5 | \(\Z/18\Z\) | not in database |
$12$ | deg 12 | \(\Z/12\Z\) | not in database |
$18$ | 18.0.14390607364515336591749112507.3 | \(\Z/3\Z \oplus \Z/9\Z\) | not in database |
$18$ | 18.0.10796753928209333245961218818048.2 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
$18$ | 18.0.275579763091789640989661724672.1 | \(\Z/18\Z\) | not in database |
$18$ | 18.0.1940306241946355696298182556229042176.2 | \(\Z/2\Z \oplus \Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | split | add | ord | ord | ord | split | ord | ord | ss | ord | ord | ord | ss | ord | ord |
$\lambda$-invariant(s) | 1 | - | 0 | 0 | 0 | 1 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0,0 | 0 | 0 |
$\mu$-invariant(s) | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0,0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.