Properties

Label 234.d
Number of curves $2$
Conductor $234$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("d1")
 
E.isogeny_class()
 

Elliptic curves in class 234.d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
234.d1 234b2 \([1, -1, 1, -569, -5075]\) \(1033364331/676\) \(13305708\) \([2]\) \(96\) \(0.30665\)  
234.d2 234b1 \([1, -1, 1, -29, -107]\) \(-132651/208\) \(-4094064\) \([2]\) \(48\) \(-0.039925\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 234.d have rank \(0\).

Complex multiplication

The elliptic curves in class 234.d do not have complex multiplication.

Modular form 234.2.a.d

sage: E.q_eigenform(10)
 
\(q + q^{2} + q^{4} + 2 q^{5} - 2 q^{7} + q^{8} + 2 q^{10} + 4 q^{11} - q^{13} - 2 q^{14} + q^{16} - 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.