Properties

Label 234.c
Number of curves $4$
Conductor $234$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("c1")
 
E.isogeny_class()
 

Elliptic curves in class 234.c

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
234.c1 234d3 \([1, -1, 1, -186656, -30992493]\) \(986551739719628473/111045168\) \(80951927472\) \([2]\) \(1280\) \(1.5174\)  
234.c2 234d4 \([1, -1, 1, -21056, 404115]\) \(1416134368422073/725251155408\) \(528708092292432\) \([2]\) \(1280\) \(1.5174\)  
234.c3 234d2 \([1, -1, 1, -11696, -479469]\) \(242702053576633/2554695936\) \(1862373337344\) \([2, 2]\) \(640\) \(1.1708\)  
234.c4 234d1 \([1, -1, 1, -176, -18669]\) \(-822656953/207028224\) \(-150923575296\) \([4]\) \(320\) \(0.82424\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 234.c have rank \(0\).

Complex multiplication

The elliptic curves in class 234.c do not have complex multiplication.

Modular form 234.2.a.c

sage: E.q_eigenform(10)
 
\(q + q^{2} + q^{4} - 2 q^{5} + 4 q^{7} + q^{8} - 2 q^{10} + 4 q^{11} + q^{13} + 4 q^{14} + q^{16} - 2 q^{17} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.